18005 lines
1.1 MiB
HTML
Raw Normal View History

2025-05-20 14:21:24 +09:00
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<!-- NewPage -->
<html lang="en">
<head>
<!-- Generated by javadoc (1.8.0_292) on Sat Dec 25 08:13:29 UTC 2021 -->
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<title>Calib3d (OpenCV 4.5.5 Java documentation)</title>
<meta name="date" content="2021-12-25">
<link rel="stylesheet" type="text/css" href="../../../stylesheet.css" title="Style">
<script type="text/javascript" src="../../../script.js"></script>
</head>
<body>
<script type="text/javascript"><!--
try {
if (location.href.indexOf('is-external=true') == -1) {
parent.document.title="Calib3d (OpenCV 4.5.5 Java documentation)";
}
}
catch(err) {
}
//-->
var methods = {"i0":9,"i1":9,"i2":9,"i3":9,"i4":9,"i5":9,"i6":9,"i7":9,"i8":9,"i9":9,"i10":9,"i11":9,"i12":9,"i13":9,"i14":9,"i15":9,"i16":9,"i17":9,"i18":9,"i19":9,"i20":9,"i21":9,"i22":9,"i23":9,"i24":9,"i25":9,"i26":9,"i27":9,"i28":9,"i29":9,"i30":9,"i31":9,"i32":9,"i33":9,"i34":9,"i35":9,"i36":9,"i37":9,"i38":9,"i39":9,"i40":9,"i41":9,"i42":9,"i43":9,"i44":9,"i45":9,"i46":9,"i47":9,"i48":9,"i49":9,"i50":9,"i51":9,"i52":9,"i53":9,"i54":9,"i55":9,"i56":9,"i57":9,"i58":9,"i59":9,"i60":9,"i61":9,"i62":9,"i63":9,"i64":9,"i65":9,"i66":9,"i67":9,"i68":9,"i69":9,"i70":9,"i71":9,"i72":9,"i73":9,"i74":9,"i75":9,"i76":9,"i77":9,"i78":9,"i79":9,"i80":9,"i81":9,"i82":9,"i83":9,"i84":9,"i85":9,"i86":9,"i87":9,"i88":9,"i89":9,"i90":9,"i91":9,"i92":9,"i93":9,"i94":9,"i95":9,"i96":9,"i97":9,"i98":9,"i99":9,"i100":9,"i101":9,"i102":9,"i103":9,"i104":9,"i105":9,"i106":9,"i107":9,"i108":9,"i109":9,"i110":9,"i111":9,"i112":9,"i113":9,"i114":9,"i115":9,"i116":9,"i117":9,"i118":9,"i119":9,"i120":9,"i121":9,"i122":9,"i123":9,"i124":9,"i125":9,"i126":9,"i127":9,"i128":9,"i129":9,"i130":9,"i131":9,"i132":9,"i133":9,"i134":9,"i135":9,"i136":9,"i137":9,"i138":9,"i139":9,"i140":9,"i141":9,"i142":9,"i143":9,"i144":9,"i145":9,"i146":9,"i147":9,"i148":9,"i149":9,"i150":9,"i151":9,"i152":9,"i153":9,"i154":9,"i155":9,"i156":9,"i157":9,"i158":9,"i159":9,"i160":9,"i161":9,"i162":9,"i163":9,"i164":9,"i165":9,"i166":9,"i167":9,"i168":9,"i169":9,"i170":9,"i171":9,"i172":9,"i173":9,"i174":9,"i175":9,"i176":9,"i177":9,"i178":9,"i179":9,"i180":9,"i181":9,"i182":9,"i183":9,"i184":9,"i185":9,"i186":9,"i187":9,"i188":9,"i189":9,"i190":9,"i191":9,"i192":9,"i193":9,"i194":9,"i195":9,"i196":9,"i197":9,"i198":9,"i199":9,"i200":9,"i201":9,"i202":9,"i203":9,"i204":9,"i205":9,"i206":9,"i207":9,"i208":9,"i209":9,"i210":9,"i211":9,"i212":9,"i213":9,"i214":9,"i215":9,"i216":9,"i217":9,"i218":9,"i219":9,"i220":9,"i221":9,"i222":9,"i223":9,"i224":9,"i225":9,"i226":9,"i227":9,"i228":9,"i229":9};
var tabs = {65535:["t0","All Methods"],1:["t1","Static Methods"],8:["t4","Concrete Methods"]};
var altColor = "altColor";
var rowColor = "rowColor";
var tableTab = "tableTab";
var activeTableTab = "activeTableTab";
</script>
<noscript>
<div>JavaScript is disabled on your browser.</div>
</noscript>
<!-- ========= START OF TOP NAVBAR ======= -->
<div class="topNav"><a name="navbar.top">
<!-- -->
</a>
<div class="skipNav"><a href="#skip.navbar.top" title="Skip navigation links">Skip navigation links</a></div>
<a name="navbar.top.firstrow">
<!-- -->
</a>
<ul class="navList" title="Navigation">
<li><a href="../../../overview-summary.html">Overview</a></li>
<li><a href="package-summary.html">Package</a></li>
<li class="navBarCell1Rev">Class</li>
<li><a href="package-tree.html">Tree</a></li>
<li><a href="../../../index-all.html">Index</a></li>
<li><a href="../../../help-doc.html">Help</a></li>
</ul>
<div class="aboutLanguage">
<script>
var url = window.location.href;
var pos = url.lastIndexOf('/javadoc/');
url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
var script = document.createElement('script');
script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
document.getElementsByTagName('head')[0].appendChild(script);
</script>
</div>
</div>
<div class="subNav">
<ul class="navList">
<li>Prev&nbsp;Class</li>
<li><a href="../../../org/opencv/calib3d/StereoBM.html" title="class in org.opencv.calib3d"><span class="typeNameLink">Next&nbsp;Class</span></a></li>
</ul>
<ul class="navList">
<li><a href="../../../index.html?org/opencv/calib3d/Calib3d.html" target="_top">Frames</a></li>
<li><a href="Calib3d.html" target="_top">No&nbsp;Frames</a></li>
</ul>
<ul class="navList" id="allclasses_navbar_top">
<li><a href="../../../allclasses-noframe.html">All&nbsp;Classes</a></li>
</ul>
<div>
<script type="text/javascript"><!--
allClassesLink = document.getElementById("allclasses_navbar_top");
if(window==top) {
allClassesLink.style.display = "block";
}
else {
allClassesLink.style.display = "none";
}
//-->
</script>
</div>
<div>
<ul class="subNavList">
<li>Summary:&nbsp;</li>
<li>Nested&nbsp;|&nbsp;</li>
<li><a href="#field.summary">Field</a>&nbsp;|&nbsp;</li>
<li><a href="#constructor.summary">Constr</a>&nbsp;|&nbsp;</li>
<li><a href="#method.summary">Method</a></li>
</ul>
<ul class="subNavList">
<li>Detail:&nbsp;</li>
<li><a href="#field.detail">Field</a>&nbsp;|&nbsp;</li>
<li><a href="#constructor.detail">Constr</a>&nbsp;|&nbsp;</li>
<li><a href="#method.detail">Method</a></li>
</ul>
</div>
<a name="skip.navbar.top">
<!-- -->
</a></div>
<!-- ========= END OF TOP NAVBAR ========= -->
<!-- ======== START OF CLASS DATA ======== -->
<div class="header">
<div class="subTitle">org.opencv.calib3d</div>
<h2 title="Class Calib3d" class="title">Class Calib3d</h2>
</div>
<div class="contentContainer">
<ul class="inheritance">
<li>java.lang.Object</li>
<li>
<ul class="inheritance">
<li>org.opencv.calib3d.Calib3d</li>
</ul>
</li>
</ul>
<div class="description">
<ul class="blockList">
<li class="blockList">
<hr>
<br>
<pre>public class <span class="typeNameLabel">Calib3d</span>
extends java.lang.Object</pre>
</li>
</ul>
</div>
<div class="summary">
<ul class="blockList">
<li class="blockList">
<!-- =========== FIELD SUMMARY =========== -->
<ul class="blockList">
<li class="blockList"><a name="field.summary">
<!-- -->
</a>
<h3>Field Summary</h3>
<table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Field Summary table, listing fields, and an explanation">
<caption><span>Fields</span><span class="tabEnd">&nbsp;</span></caption>
<tr>
<th class="colFirst" scope="col">Modifier and Type</th>
<th class="colLast" scope="col">Field and Description</th>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_ACCURACY">CALIB_CB_ACCURACY</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_ADAPTIVE_THRESH">CALIB_CB_ADAPTIVE_THRESH</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_ASYMMETRIC_GRID">CALIB_CB_ASYMMETRIC_GRID</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_CLUSTERING">CALIB_CB_CLUSTERING</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_EXHAUSTIVE">CALIB_CB_EXHAUSTIVE</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_FAST_CHECK">CALIB_CB_FAST_CHECK</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_FILTER_QUADS">CALIB_CB_FILTER_QUADS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_LARGER">CALIB_CB_LARGER</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_MARKER">CALIB_CB_MARKER</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_NORMALIZE_IMAGE">CALIB_CB_NORMALIZE_IMAGE</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_CB_SYMMETRIC_GRID">CALIB_CB_SYMMETRIC_GRID</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_ASPECT_RATIO">CALIB_FIX_ASPECT_RATIO</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_FOCAL_LENGTH">CALIB_FIX_FOCAL_LENGTH</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_INTRINSIC">CALIB_FIX_INTRINSIC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_K1">CALIB_FIX_K1</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_K2">CALIB_FIX_K2</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_K3">CALIB_FIX_K3</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_K4">CALIB_FIX_K4</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_K5">CALIB_FIX_K5</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_K6">CALIB_FIX_K6</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_PRINCIPAL_POINT">CALIB_FIX_PRINCIPAL_POINT</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_S1_S2_S3_S4">CALIB_FIX_S1_S2_S3_S4</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_TANGENT_DIST">CALIB_FIX_TANGENT_DIST</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_FIX_TAUX_TAUY">CALIB_FIX_TAUX_TAUY</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_HAND_EYE_ANDREFF">CALIB_HAND_EYE_ANDREFF</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_HAND_EYE_DANIILIDIS">CALIB_HAND_EYE_DANIILIDIS</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_HAND_EYE_HORAUD">CALIB_HAND_EYE_HORAUD</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_HAND_EYE_PARK">CALIB_HAND_EYE_PARK</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_HAND_EYE_TSAI">CALIB_HAND_EYE_TSAI</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_NINTRINSIC">CALIB_NINTRINSIC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_RATIONAL_MODEL">CALIB_RATIONAL_MODEL</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_ROBOT_WORLD_HAND_EYE_LI">CALIB_ROBOT_WORLD_HAND_EYE_LI</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_ROBOT_WORLD_HAND_EYE_SHAH">CALIB_ROBOT_WORLD_HAND_EYE_SHAH</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_SAME_FOCAL_LENGTH">CALIB_SAME_FOCAL_LENGTH</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_THIN_PRISM_MODEL">CALIB_THIN_PRISM_MODEL</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_TILTED_MODEL">CALIB_TILTED_MODEL</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_USE_EXTRINSIC_GUESS">CALIB_USE_EXTRINSIC_GUESS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_USE_INTRINSIC_GUESS">CALIB_USE_INTRINSIC_GUESS</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_USE_LU">CALIB_USE_LU</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_USE_QR">CALIB_USE_QR</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_ZERO_DISPARITY">CALIB_ZERO_DISPARITY</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CALIB_ZERO_TANGENT_DIST">CALIB_ZERO_TANGENT_DIST</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CirclesGridFinderParameters_ASYMMETRIC_GRID">CirclesGridFinderParameters_ASYMMETRIC_GRID</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CirclesGridFinderParameters_SYMMETRIC_GRID">CirclesGridFinderParameters_SYMMETRIC_GRID</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CV_DLS">CV_DLS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CV_EPNP">CV_EPNP</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CV_ITERATIVE">CV_ITERATIVE</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CV_P3P">CV_P3P</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CvLevMarq_CALC_J">CvLevMarq_CALC_J</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CvLevMarq_CHECK_ERR">CvLevMarq_CHECK_ERR</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CvLevMarq_DONE">CvLevMarq_DONE</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#CvLevMarq_STARTED">CvLevMarq_STARTED</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_CHECK_COND">fisheye_CALIB_CHECK_COND</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_FOCAL_LENGTH">fisheye_CALIB_FIX_FOCAL_LENGTH</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_INTRINSIC">fisheye_CALIB_FIX_INTRINSIC</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_K1">fisheye_CALIB_FIX_K1</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_K2">fisheye_CALIB_FIX_K2</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_K3">fisheye_CALIB_FIX_K3</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_K4">fisheye_CALIB_FIX_K4</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_PRINCIPAL_POINT">fisheye_CALIB_FIX_PRINCIPAL_POINT</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_FIX_SKEW">fisheye_CALIB_FIX_SKEW</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_RECOMPUTE_EXTRINSIC">fisheye_CALIB_RECOMPUTE_EXTRINSIC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_USE_INTRINSIC_GUESS">fisheye_CALIB_USE_INTRINSIC_GUESS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_CALIB_ZERO_DISPARITY">fisheye_CALIB_ZERO_DISPARITY</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#FM_7POINT">FM_7POINT</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#FM_8POINT">FM_8POINT</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#FM_LMEDS">FM_LMEDS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#FM_RANSAC">FM_RANSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#LMEDS">LMEDS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#LOCAL_OPTIM_GC">LOCAL_OPTIM_GC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#LOCAL_OPTIM_INNER_AND_ITER_LO">LOCAL_OPTIM_INNER_AND_ITER_LO</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#LOCAL_OPTIM_INNER_LO">LOCAL_OPTIM_INNER_LO</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#LOCAL_OPTIM_NULL">LOCAL_OPTIM_NULL</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#LOCAL_OPTIM_SIGMA">LOCAL_OPTIM_SIGMA</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#NEIGH_FLANN_KNN">NEIGH_FLANN_KNN</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#NEIGH_FLANN_RADIUS">NEIGH_FLANN_RADIUS</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#NEIGH_GRID">NEIGH_GRID</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#PROJ_SPHERICAL_EQRECT">PROJ_SPHERICAL_EQRECT</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#PROJ_SPHERICAL_ORTHO">PROJ_SPHERICAL_ORTHO</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#RANSAC">RANSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#RHO">RHO</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SAMPLING_NAPSAC">SAMPLING_NAPSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SAMPLING_PROGRESSIVE_NAPSAC">SAMPLING_PROGRESSIVE_NAPSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SAMPLING_PROSAC">SAMPLING_PROSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SAMPLING_UNIFORM">SAMPLING_UNIFORM</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SCORE_METHOD_LMEDS">SCORE_METHOD_LMEDS</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SCORE_METHOD_MAGSAC">SCORE_METHOD_MAGSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SCORE_METHOD_MSAC">SCORE_METHOD_MSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SCORE_METHOD_RANSAC">SCORE_METHOD_RANSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_AP3P">SOLVEPNP_AP3P</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_DLS">SOLVEPNP_DLS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_EPNP">SOLVEPNP_EPNP</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_IPPE">SOLVEPNP_IPPE</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_IPPE_SQUARE">SOLVEPNP_IPPE_SQUARE</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_ITERATIVE">SOLVEPNP_ITERATIVE</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_MAX_COUNT">SOLVEPNP_MAX_COUNT</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_P3P">SOLVEPNP_P3P</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_SQPNP">SOLVEPNP_SQPNP</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#SOLVEPNP_UPNP">SOLVEPNP_UPNP</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#USAC_ACCURATE">USAC_ACCURATE</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#USAC_DEFAULT">USAC_DEFAULT</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#USAC_FAST">USAC_FAST</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#USAC_FM_8PTS">USAC_FM_8PTS</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#USAC_MAGSAC">USAC_MAGSAC</a></span></code>&nbsp;</td>
</tr>
<tr class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#USAC_PARALLEL">USAC_PARALLEL</a></span></code>&nbsp;</td>
</tr>
<tr class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#USAC_PROSAC">USAC_PROSAC</a></span></code>&nbsp;</td>
</tr>
</table>
</li>
</ul>
<!-- ======== CONSTRUCTOR SUMMARY ======== -->
<ul class="blockList">
<li class="blockList"><a name="constructor.summary">
<!-- -->
</a>
<h3>Constructor Summary</h3>
<table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Constructor Summary table, listing constructors, and an explanation">
<caption><span>Constructors</span><span class="tabEnd">&nbsp;</span></caption>
<tr>
<th class="colOne" scope="col">Constructor and Description</th>
</tr>
<tr class="altColor">
<td class="colOne"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#Calib3d--">Calib3d</a></span>()</code>&nbsp;</td>
</tr>
</table>
</li>
</ul>
<!-- ========== METHOD SUMMARY =========== -->
<ul class="blockList">
<li class="blockList"><a name="method.summary">
<!-- -->
</a>
<h3>Method Summary</h3>
<table class="memberSummary" border="0" cellpadding="3" cellspacing="0" summary="Method Summary table, listing methods, and an explanation">
<caption><span id="t0" class="activeTableTab"><span>All Methods</span><span class="tabEnd">&nbsp;</span></span><span id="t1" class="tableTab"><span><a href="javascript:show(1);">Static Methods</a></span><span class="tabEnd">&nbsp;</span></span><span id="t4" class="tableTab"><span><a href="javascript:show(8);">Concrete Methods</a></span><span class="tabEnd">&nbsp;</span></span></caption>
<tr>
<th class="colFirst" scope="col">Modifier and Type</th>
<th class="colLast" scope="col">Method and Description</th>
</tr>
<tr id="i0" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCamera-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-">calibrateCamera</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs)</code>&nbsp;</td>
</tr>
<tr id="i1" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCamera-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-">calibrateCamera</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags)</code>&nbsp;</td>
</tr>
<tr id="i2" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCamera-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-org.opencv.core.TermCriteria-">calibrateCamera</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>&nbsp;</td>
</tr>
<tr id="i3" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraExtended-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">calibrateCameraExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors)</code>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.</div>
</td>
</tr>
<tr id="i4" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraExtended-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">calibrateCameraExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags)</code>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.</div>
</td>
</tr>
<tr id="i5" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraExtended-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">calibrateCameraExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.</div>
</td>
</tr>
<tr id="i6" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraRO-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-">calibrateCameraRO</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints)</code>&nbsp;</td>
</tr>
<tr id="i7" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraRO-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-int-">calibrateCameraRO</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
int&nbsp;flags)</code>&nbsp;</td>
</tr>
<tr id="i8" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraRO-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">calibrateCameraRO</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>&nbsp;</td>
</tr>
<tr id="i9" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraROExtended-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">calibrateCameraROExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors)</code>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.</div>
</td>
</tr>
<tr id="i10" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraROExtended-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">calibrateCameraROExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags)</code>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.</div>
</td>
</tr>
<tr id="i11" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateCameraROExtended-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">calibrateCameraROExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.</div>
</td>
</tr>
<tr id="i12" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-">calibrateHandEye</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_target2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_target2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_cam2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_cam2gripper)</code>
<div class="block">Computes Hand-Eye calibration: \(_{}^{g}\textrm{T}_c\)</div>
</td>
</tr>
<tr id="i13" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-int-">calibrateHandEye</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_target2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_target2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_cam2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_cam2gripper,
int&nbsp;method)</code>
<div class="block">Computes Hand-Eye calibration: \(_{}^{g}\textrm{T}_c\)</div>
</td>
</tr>
<tr id="i14" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateRobotWorldHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">calibrateRobotWorldHandEye</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_base2gripper,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_base2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_gripper2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_gripper2cam)</code>
<div class="block">Computes Robot-World/Hand-Eye calibration: \(_{}^{w}\textrm{T}_b\) and \(_{}^{c}\textrm{T}_g\)</div>
</td>
</tr>
<tr id="i15" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrateRobotWorldHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">calibrateRobotWorldHandEye</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_base2gripper,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_base2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_gripper2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_gripper2cam,
int&nbsp;method)</code>
<div class="block">Computes Robot-World/Hand-Eye calibration: \(_{}^{w}\textrm{T}_b\) and \(_{}^{c}\textrm{T}_g\)</div>
</td>
</tr>
<tr id="i16" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#calibrationMatrixValues-org.opencv.core.Mat-org.opencv.core.Size-double-double-double:A-double:A-double:A-org.opencv.core.Point-double:A-">calibrationMatrixValues</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;apertureWidth,
double&nbsp;apertureHeight,
double[]&nbsp;fovx,
double[]&nbsp;fovy,
double[]&nbsp;focalLength,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;principalPoint,
double[]&nbsp;aspectRatio)</code>
<div class="block">Computes useful camera characteristics from the camera intrinsic matrix.</div>
</td>
</tr>
<tr id="i17" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#checkChessboard-org.opencv.core.Mat-org.opencv.core.Size-">checkChessboard</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size)</code>&nbsp;</td>
</tr>
<tr id="i18" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i19" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i20" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i21" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i22" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i23" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i24" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt1)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i25" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr2)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i26" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">composeRT</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt2)</code>
<div class="block">Combines two rotation-and-shift transformations.</div>
</td>
</tr>
<tr id="i27" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#computeCorrespondEpilines-org.opencv.core.Mat-int-org.opencv.core.Mat-org.opencv.core.Mat-">computeCorrespondEpilines</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points,
int&nbsp;whichImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;lines)</code>
<div class="block">For points in an image of a stereo pair, computes the corresponding epilines in the other image.</div>
</td>
</tr>
<tr id="i28" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#convertPointsFromHomogeneous-org.opencv.core.Mat-org.opencv.core.Mat-">convertPointsFromHomogeneous</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</code>
<div class="block">Converts points from homogeneous to Euclidean space.</div>
</td>
</tr>
<tr id="i29" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#convertPointsToHomogeneous-org.opencv.core.Mat-org.opencv.core.Mat-">convertPointsToHomogeneous</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</code>
<div class="block">Converts points from Euclidean to homogeneous space.</div>
</td>
</tr>
<tr id="i30" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#correctMatches-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">correctMatches</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newPoints1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newPoints2)</code>
<div class="block">Refines coordinates of corresponding points.</div>
</td>
</tr>
<tr id="i31" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#decomposeEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">decomposeEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</code>
<div class="block">Decompose an essential matrix to possible rotations and translation.</div>
</td>
</tr>
<tr id="i32" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#decomposeHomographyMat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-java.util.List-">decomposeHomographyMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rotations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;translations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;normals)</code>
<div class="block">Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).</div>
</td>
</tr>
<tr id="i33" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">decomposeProjectionMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect)</code>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
</td>
</tr>
<tr id="i34" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">decomposeProjectionMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX)</code>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
</td>
</tr>
<tr id="i35" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">decomposeProjectionMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixY)</code>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
</td>
</tr>
<tr id="i36" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">decomposeProjectionMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixY,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixZ)</code>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
</td>
</tr>
<tr id="i37" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">decomposeProjectionMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixY,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixZ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;eulerAngles)</code>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
</td>
</tr>
<tr id="i38" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#drawChessboardCorners-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.MatOfPoint2f-boolean-">drawChessboardCorners</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;corners,
boolean&nbsp;patternWasFound)</code>
<div class="block">Renders the detected chessboard corners.</div>
</td>
</tr>
<tr id="i39" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#drawFrameAxes-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-float-">drawFrameAxes</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
float&nbsp;length)</code>
<div class="block">Draw axes of the world/object coordinate system from pose estimation.</div>
</td>
</tr>
<tr id="i40" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#drawFrameAxes-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-float-int-">drawFrameAxes</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
float&nbsp;length,
int&nbsp;thickness)</code>
<div class="block">Draw axes of the world/object coordinate system from pose estimation.</div>
</td>
</tr>
<tr id="i41" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to)</code>
<div class="block">Computes an optimal affine transformation between two 2D point sets.</div>
</td>
</tr>
<tr id="i42" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</code>
<div class="block">Computes an optimal affine transformation between two 2D point sets.</div>
</td>
</tr>
<tr id="i43" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method)</code>
<div class="block">Computes an optimal affine transformation between two 2D point sets.</div>
</td>
</tr>
<tr id="i44" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</code>
<div class="block">Computes an optimal affine transformation between two 2D point sets.</div>
</td>
</tr>
<tr id="i45" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters)</code>
<div class="block">Computes an optimal affine transformation between two 2D point sets.</div>
</td>
</tr>
<tr id="i46" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence)</code>
<div class="block">Computes an optimal affine transformation between two 2D point sets.</div>
</td>
</tr>
<tr id="i47" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-long-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence,
long&nbsp;refineIters)</code>
<div class="block">Computes an optimal affine transformation between two 2D point sets.</div>
</td>
</tr>
<tr id="i48" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">estimateAffine2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pts1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pts2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</code>&nbsp;</td>
</tr>
<tr id="i49" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-">estimateAffine3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</code>
<div class="block">Computes an optimal affine transformation between two 3D point sets.</div>
</td>
</tr>
<tr id="i50" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-double:A-">estimateAffine3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
double[]&nbsp;scale)</code>
<div class="block">Computes an optimal affine transformation between two 3D point sets.</div>
</td>
</tr>
<tr id="i51" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-double:A-boolean-">estimateAffine3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
double[]&nbsp;scale,
boolean&nbsp;force_rotation)</code>
<div class="block">Computes an optimal affine transformation between two 3D point sets.</div>
</td>
</tr>
<tr id="i52" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">estimateAffine3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</code>
<div class="block">Computes an optimal affine transformation between two 3D point sets.</div>
</td>
</tr>
<tr id="i53" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">estimateAffine3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold)</code>
<div class="block">Computes an optimal affine transformation between two 3D point sets.</div>
</td>
</tr>
<tr id="i54" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-double-">estimateAffine3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold,
double&nbsp;confidence)</code>
<div class="block">Computes an optimal affine transformation between two 3D point sets.</div>
</td>
</tr>
<tr id="i55" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-">estimateAffinePartial2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to)</code>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
</td>
</tr>
<tr id="i56" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">estimateAffinePartial2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</code>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
</td>
</tr>
<tr id="i57" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">estimateAffinePartial2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method)</code>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
</td>
</tr>
<tr id="i58" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">estimateAffinePartial2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</code>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
</td>
</tr>
<tr id="i59" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-">estimateAffinePartial2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters)</code>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
</td>
</tr>
<tr id="i60" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-">estimateAffinePartial2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence)</code>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
</td>
</tr>
<tr id="i61" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-long-">estimateAffinePartial2D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence,
long&nbsp;refineIters)</code>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
</td>
</tr>
<tr id="i62" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-">estimateChessboardSharpness</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners)</code>
<div class="block">Estimates the sharpness of a detected chessboard.</div>
</td>
</tr>
<tr id="i63" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-float-">estimateChessboardSharpness</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
float&nbsp;rise_distance)</code>
<div class="block">Estimates the sharpness of a detected chessboard.</div>
</td>
</tr>
<tr id="i64" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-float-boolean-">estimateChessboardSharpness</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
float&nbsp;rise_distance,
boolean&nbsp;vertical)</code>
<div class="block">Estimates the sharpness of a detected chessboard.</div>
</td>
</tr>
<tr id="i65" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-float-boolean-org.opencv.core.Mat-">estimateChessboardSharpness</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
float&nbsp;rise_distance,
boolean&nbsp;vertical,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;sharpness)</code>
<div class="block">Estimates the sharpness of a detected chessboard.</div>
</td>
</tr>
<tr id="i66" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateTranslation3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">estimateTranslation3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</code>
<div class="block">Computes an optimal translation between two 3D point sets.</div>
</td>
</tr>
<tr id="i67" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateTranslation3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">estimateTranslation3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold)</code>
<div class="block">Computes an optimal translation between two 3D point sets.</div>
</td>
</tr>
<tr id="i68" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#estimateTranslation3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-double-">estimateTranslation3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold,
double&nbsp;confidence)</code>
<div class="block">Computes an optimal translation between two 3D point sets.</div>
</td>
</tr>
<tr id="i69" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#filterHomographyDecompByVisibleRefpoints-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">filterHomographyDecompByVisibleRefpoints</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rotations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;normals,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;beforePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;afterPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;possibleSolutions)</code>
<div class="block">Filters homography decompositions based on additional information.</div>
</td>
</tr>
<tr id="i70" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#filterHomographyDecompByVisibleRefpoints-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">filterHomographyDecompByVisibleRefpoints</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rotations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;normals,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;beforePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;afterPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;possibleSolutions,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pointsMask)</code>
<div class="block">Filters homography decompositions based on additional information.</div>
</td>
</tr>
<tr id="i71" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#filterSpeckles-org.opencv.core.Mat-double-int-double-">filterSpeckles</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
double&nbsp;newVal,
int&nbsp;maxSpeckleSize,
double&nbsp;maxDiff)</code>
<div class="block">Filters off small noise blobs (speckles) in the disparity map</div>
</td>
</tr>
<tr id="i72" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#filterSpeckles-org.opencv.core.Mat-double-int-double-org.opencv.core.Mat-">filterSpeckles</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
double&nbsp;newVal,
int&nbsp;maxSpeckleSize,
double&nbsp;maxDiff,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;buf)</code>
<div class="block">Filters off small noise blobs (speckles) in the disparity map</div>
</td>
</tr>
<tr id="i73" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#find4QuadCornerSubpix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-">find4QuadCornerSubpix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;region_size)</code>&nbsp;</td>
</tr>
<tr id="i74" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findChessboardCorners-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.MatOfPoint2f-">findChessboardCorners</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;corners)</code>
<div class="block">Finds the positions of internal corners of the chessboard.</div>
</td>
</tr>
<tr id="i75" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findChessboardCorners-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.MatOfPoint2f-int-">findChessboardCorners</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;corners,
int&nbsp;flags)</code>
<div class="block">Finds the positions of internal corners of the chessboard.</div>
</td>
</tr>
<tr id="i76" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findChessboardCornersSB-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-">findChessboardCornersSB</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners)</code>&nbsp;</td>
</tr>
<tr id="i77" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findChessboardCornersSB-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-int-">findChessboardCornersSB</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
int&nbsp;flags)</code>&nbsp;</td>
</tr>
<tr id="i78" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findChessboardCornersSBWithMeta-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-int-org.opencv.core.Mat-">findChessboardCornersSBWithMeta</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;meta)</code>
<div class="block">Finds the positions of internal corners of the chessboard using a sector based approach.</div>
</td>
</tr>
<tr id="i79" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findCirclesGrid-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-">findCirclesGrid</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;centers)</code>&nbsp;</td>
</tr>
<tr id="i80" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findCirclesGrid-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-int-">findCirclesGrid</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;centers,
int&nbsp;flags)</code>&nbsp;</td>
</tr>
<tr id="i81" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2)</code>&nbsp;</td>
</tr>
<tr id="i82" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal)</code>&nbsp;</td>
</tr>
<tr id="i83" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp)</code>&nbsp;</td>
</tr>
<tr id="i84" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method)</code>&nbsp;</td>
</tr>
<tr id="i85" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob)</code>&nbsp;</td>
</tr>
<tr id="i86" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-double-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</code>&nbsp;</td>
</tr>
<tr id="i87" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-double-int-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters)</code>&nbsp;</td>
</tr>
<tr id="i88" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-double-int-org.opencv.core.Mat-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>&nbsp;</td>
</tr>
<tr id="i89" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i90" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i91" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i92" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i93" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-int-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i94" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-int-org.opencv.core.Mat-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i95" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
</td>
</tr>
<tr id="i96" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
</td>
</tr>
<tr id="i97" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method,
double&nbsp;prob)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
</td>
</tr>
<tr id="i98" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
</td>
</tr>
<tr id="i99" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-org.opencv.core.Mat-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
</td>
</tr>
<tr id="i100" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">findEssentialMat</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dist_coeff1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dist_coeff2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</code>&nbsp;</td>
</tr>
<tr id="i101" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2)</code>&nbsp;</td>
</tr>
<tr id="i102" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method)</code>&nbsp;</td>
</tr>
<tr id="i103" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</code>&nbsp;</td>
</tr>
<tr id="i104" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence)</code>&nbsp;</td>
</tr>
<tr id="i105" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-int-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence,
int&nbsp;maxIters)</code>
<div class="block">Calculates a fundamental matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i106" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-int-org.opencv.core.Mat-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence,
int&nbsp;maxIters,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>
<div class="block">Calculates a fundamental matrix from the corresponding points in two images.</div>
</td>
</tr>
<tr id="i107" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-org.opencv.core.Mat-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>&nbsp;</td>
</tr>
<tr id="i108" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">findFundamentalMat</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</code>&nbsp;</td>
</tr>
<tr id="i109" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-">findHomography</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints)</code>
<div class="block">Finds a perspective transformation between two planes.</div>
</td>
</tr>
<tr id="i110" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-">findHomography</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method)</code>
<div class="block">Finds a perspective transformation between two planes.</div>
</td>
</tr>
<tr id="i111" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-">findHomography</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</code>
<div class="block">Finds a perspective transformation between two planes.</div>
</td>
</tr>
<tr id="i112" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-org.opencv.core.Mat-">findHomography</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>
<div class="block">Finds a perspective transformation between two planes.</div>
</td>
</tr>
<tr id="i113" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-org.opencv.core.Mat-int-">findHomography</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
int&nbsp;maxIters)</code>
<div class="block">Finds a perspective transformation between two planes.</div>
</td>
</tr>
<tr id="i114" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-org.opencv.core.Mat-int-double-">findHomography</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
int&nbsp;maxIters,
double&nbsp;confidence)</code>
<div class="block">Finds a perspective transformation between two planes.</div>
</td>
</tr>
<tr id="i115" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">findHomography</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</code>&nbsp;</td>
</tr>
<tr id="i116" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_calibrate-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-">fisheye_calibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs)</code>
<div class="block">Performs camera calibaration</div>
</td>
</tr>
<tr id="i117" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_calibrate-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-">fisheye_calibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags)</code>
<div class="block">Performs camera calibaration</div>
</td>
</tr>
<tr id="i118" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_calibrate-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-org.opencv.core.TermCriteria-">fisheye_calibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block">Performs camera calibaration</div>
</td>
</tr>
<tr id="i119" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_distortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_distortPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</code>
<div class="block">Distorts 2D points using fisheye model.</div>
</td>
</tr>
<tr id="i120" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_distortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">fisheye_distortPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
double&nbsp;alpha)</code>
<div class="block">Distorts 2D points using fisheye model.</div>
</td>
</tr>
<tr id="i121" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_estimateNewCameraMatrixForUndistortRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P)</code>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
</td>
</tr>
<tr id="i122" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-">fisheye_estimateNewCameraMatrixForUndistortRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
double&nbsp;balance)</code>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
</td>
</tr>
<tr id="i123" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Size-">fisheye_estimateNewCameraMatrixForUndistortRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
double&nbsp;balance,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;new_size)</code>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
</td>
</tr>
<tr id="i124" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Size-double-">fisheye_estimateNewCameraMatrixForUndistortRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
double&nbsp;balance,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;new_size,
double&nbsp;fov_scale)</code>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
</td>
</tr>
<tr id="i125" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_initUndistortRectifyMap-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_initUndistortRectifyMap</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size,
int&nbsp;m1type,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map2)</code>
<div class="block">Computes undistortion and rectification maps for image transform by #remap.</div>
</td>
</tr>
<tr id="i126" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_projectPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_projectPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</code>&nbsp;</td>
</tr>
<tr id="i127" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_projectPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">fisheye_projectPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
double&nbsp;alpha)</code>&nbsp;</td>
</tr>
<tr id="i128" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_projectPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Mat-">fisheye_projectPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian)</code>&nbsp;</td>
</tr>
<tr id="i129" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_stereoCalibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T)</code>
<div class="block">Performs stereo calibration</div>
</td>
</tr>
<tr id="i130" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-int-">fisheye_stereoCalibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
int&nbsp;flags)</code>
<div class="block">Performs stereo calibration</div>
</td>
</tr>
<tr id="i131" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">fisheye_stereoCalibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block">Performs stereo calibration</div>
</td>
</tr>
<tr id="i132" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">fisheye_stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags)</code>
<div class="block">Stereo rectification for fisheye camera model</div>
</td>
</tr>
<tr id="i133" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.Size-">fisheye_stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize)</code>
<div class="block">Stereo rectification for fisheye camera model</div>
</td>
</tr>
<tr id="i134" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.Size-double-">fisheye_stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
double&nbsp;balance)</code>
<div class="block">Stereo rectification for fisheye camera model</div>
</td>
</tr>
<tr id="i135" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.Size-double-double-">fisheye_stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
double&nbsp;balance,
double&nbsp;fov_scale)</code>
<div class="block">Stereo rectification for fisheye camera model</div>
</td>
</tr>
<tr id="i136" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_undistortImage-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_undistortImage</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</code>
<div class="block">Transforms an image to compensate for fisheye lens distortion.</div>
</td>
</tr>
<tr id="i137" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_undistortImage-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_undistortImage</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Knew)</code>
<div class="block">Transforms an image to compensate for fisheye lens distortion.</div>
</td>
</tr>
<tr id="i138" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_undistortImage-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-">fisheye_undistortImage</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Knew,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;new_size)</code>
<div class="block">Transforms an image to compensate for fisheye lens distortion.</div>
</td>
</tr>
<tr id="i139" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_undistortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_undistortPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</code>
<div class="block">Undistorts 2D points using fisheye model</div>
</td>
</tr>
<tr id="i140" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_undistortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_undistortPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R)</code>
<div class="block">Undistorts 2D points using fisheye model</div>
</td>
</tr>
<tr id="i141" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#fisheye_undistortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">fisheye_undistortPoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P)</code>
<div class="block">Undistorts 2D points using fisheye model</div>
</td>
</tr>
<tr id="i142" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getDefaultNewCameraMatrix-org.opencv.core.Mat-">getDefaultNewCameraMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix)</code>
<div class="block">Returns the default new camera matrix.</div>
</td>
</tr>
<tr id="i143" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getDefaultNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Size-">getDefaultNewCameraMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgsize)</code>
<div class="block">Returns the default new camera matrix.</div>
</td>
</tr>
<tr id="i144" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getDefaultNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Size-boolean-">getDefaultNewCameraMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgsize,
boolean&nbsp;centerPrincipalPoint)</code>
<div class="block">Returns the default new camera matrix.</div>
</td>
</tr>
<tr id="i145" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-">getOptimalNewCameraMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha)</code>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
</td>
</tr>
<tr id="i146" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-org.opencv.core.Size-">getOptimalNewCameraMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize)</code>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
</td>
</tr>
<tr id="i147" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-org.opencv.core.Size-org.opencv.core.Rect-">getOptimalNewCameraMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI)</code>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
</td>
</tr>
<tr id="i148" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-org.opencv.core.Size-org.opencv.core.Rect-boolean-">getOptimalNewCameraMatrix</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI,
boolean&nbsp;centerPrincipalPoint)</code>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
</td>
</tr>
<tr id="i149" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#getValidDisparityROI-org.opencv.core.Rect-org.opencv.core.Rect-int-int-int-">getValidDisparityROI</a></span>(<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi1,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi2,
int&nbsp;minDisparity,
int&nbsp;numberOfDisparities,
int&nbsp;blockSize)</code>&nbsp;</td>
</tr>
<tr id="i150" class="altColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#initCameraMatrix2D-java.util.List-java.util.List-org.opencv.core.Size-">initCameraMatrix2D</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize)</code>
<div class="block">Finds an initial camera intrinsic matrix from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i151" class="rowColor">
<td class="colFirst"><code>static <a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a></code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#initCameraMatrix2D-java.util.List-java.util.List-org.opencv.core.Size-double-">initCameraMatrix2D</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;aspectRatio)</code>
<div class="block">Finds an initial camera intrinsic matrix from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i152" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#initInverseRectificationMap-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-">initInverseRectificationMap</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newCameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size,
int&nbsp;m1type,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map2)</code>
<div class="block">Computes the projection and inverse-rectification transformation map.</div>
</td>
</tr>
<tr id="i153" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#initUndistortRectifyMap-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-">initUndistortRectifyMap</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newCameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size,
int&nbsp;m1type,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map2)</code>
<div class="block">Computes the undistortion and rectification transformation map.</div>
</td>
</tr>
<tr id="i154" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#matMulDeriv-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">matMulDeriv</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;A,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;B,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dABdA,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dABdB)</code>
<div class="block">Computes partial derivatives of the matrix product for each multiplied matrix.</div>
</td>
</tr>
<tr id="i155" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#projectPoints-org.opencv.core.MatOfPoint3f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.MatOfPoint2f-">projectPoints</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints)</code>
<div class="block">Projects 3D points to an image plane.</div>
</td>
</tr>
<tr id="i156" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#projectPoints-org.opencv.core.MatOfPoint3f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-">projectPoints</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian)</code>
<div class="block">Projects 3D points to an image plane.</div>
</td>
</tr>
<tr id="i157" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#projectPoints-org.opencv.core.MatOfPoint3f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-double-">projectPoints</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian,
double&nbsp;aspectRatio)</code>
<div class="block">Projects 3D points to an image plane.</div>
</td>
</tr>
<tr id="i158" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</code>&nbsp;</td>
</tr>
<tr id="i159" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;focal)</code>&nbsp;</td>
</tr>
<tr id="i160" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp)</code>&nbsp;</td>
</tr>
<tr id="i161" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>&nbsp;</td>
</tr>
<tr id="i162" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</code>
<div class="block">Recovers the relative camera rotation and the translation from an estimated essential
matrix and the corresponding points in two images, using cheirality check.</div>
</td>
</tr>
<tr id="i163" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;distanceThresh)</code>&nbsp;</td>
</tr>
<tr id="i164" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;distanceThresh,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>&nbsp;</td>
</tr>
<tr id="i165" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Mat-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;distanceThresh,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;triangulatedPoints)</code>&nbsp;</td>
</tr>
<tr id="i166" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>
<div class="block">Recovers the relative camera rotation and the translation from an estimated essential
matrix and the corresponding points in two images, using cheirality check.</div>
</td>
</tr>
<tr id="i167" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</code>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check.</div>
</td>
</tr>
<tr id="i168" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method)</code>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check.</div>
</td>
</tr>
<tr id="i169" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method,
double&nbsp;prob)</code>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check.</div>
</td>
</tr>
<tr id="i170" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</code>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check.</div>
</td>
</tr>
<tr id="i171" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-org.opencv.core.Mat-">recoverPose</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</code>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check.</div>
</td>
</tr>
<tr id="i172" class="altColor">
<td class="colFirst"><code>static float</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#rectify3Collinear-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Size-org.opencv.core.Rect-org.opencv.core.Rect-int-">rectify3Collinear</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs3,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imgpt1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imgpt3,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R12,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T12,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R13,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T13,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi1,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi2,
int&nbsp;flags)</code>&nbsp;</td>
</tr>
<tr id="i173" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#reprojectImageTo3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">reprojectImageTo3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;_3dImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q)</code>
<div class="block">Reprojects a disparity image to 3D space.</div>
</td>
</tr>
<tr id="i174" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#reprojectImageTo3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-boolean-">reprojectImageTo3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;_3dImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
boolean&nbsp;handleMissingValues)</code>
<div class="block">Reprojects a disparity image to 3D space.</div>
</td>
</tr>
<tr id="i175" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#reprojectImageTo3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-">reprojectImageTo3D</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;_3dImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
boolean&nbsp;handleMissingValues,
int&nbsp;ddepth)</code>
<div class="block">Reprojects a disparity image to 3D space.</div>
</td>
</tr>
<tr id="i176" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#Rodrigues-org.opencv.core.Mat-org.opencv.core.Mat-">Rodrigues</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</code>
<div class="block">Converts a rotation matrix to a rotation vector or vice versa.</div>
</td>
</tr>
<tr id="i177" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#Rodrigues-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">Rodrigues</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian)</code>
<div class="block">Converts a rotation matrix to a rotation vector or vice versa.</div>
</td>
</tr>
<tr id="i178" class="altColor">
<td class="colFirst"><code>static double[]</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">RQDecomp3x3</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ)</code>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
</td>
</tr>
<tr id="i179" class="rowColor">
<td class="colFirst"><code>static double[]</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">RQDecomp3x3</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qx)</code>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
</td>
</tr>
<tr id="i180" class="altColor">
<td class="colFirst"><code>static double[]</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">RQDecomp3x3</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qx,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qy)</code>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
</td>
</tr>
<tr id="i181" class="rowColor">
<td class="colFirst"><code>static double[]</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">RQDecomp3x3</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qx,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qy,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qz)</code>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
</td>
</tr>
<tr id="i182" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#sampsonDistance-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">sampsonDistance</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F)</code>
<div class="block">Calculates the Sampson Distance between two points.</div>
</td>
</tr>
<tr id="i183" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solveP3P-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-">solveP3P</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags)</code>
<div class="block">Finds an object pose from 3 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i184" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnP-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-">solvePnP</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i185" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnP-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-">solvePnP</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i186" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnP-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-">solvePnP</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i187" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-">solvePnPGeneric</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i188" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-">solvePnPGeneric</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i189" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-">solvePnPGeneric</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i190" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-org.opencv.core.Mat-">solvePnPGeneric</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i191" class="rowColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-org.opencv.core.Mat-org.opencv.core.Mat-">solvePnPGeneric</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i192" class="altColor">
<td class="colFirst"><code>static int</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">solvePnPGeneric</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;reprojectionError)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences.</div>
</td>
</tr>
<tr id="i193" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.</div>
</td>
</tr>
<tr id="i194" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.</div>
</td>
</tr>
<tr id="i195" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.</div>
</td>
</tr>
<tr id="i196" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.</div>
</td>
</tr>
<tr id="i197" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-double-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError,
double&nbsp;confidence)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.</div>
</td>
</tr>
<tr id="i198" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-double-org.opencv.core.Mat-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError,
double&nbsp;confidence,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.</div>
</td>
</tr>
<tr id="i199" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-double-org.opencv.core.Mat-int-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError,
double&nbsp;confidence,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;flags)</code>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.</div>
</td>
</tr>
<tr id="i200" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</code>&nbsp;</td>
</tr>
<tr id="i201" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">solvePnPRansac</a></span>(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</code>&nbsp;</td>
</tr>
<tr id="i202" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRefineLM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">solvePnPRefineLM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</code>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.</div>
</td>
</tr>
<tr id="i203" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRefineLM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-">solvePnPRefineLM</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.</div>
</td>
</tr>
<tr id="i204" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRefineVVS-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">solvePnPRefineVVS</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</code>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.</div>
</td>
</tr>
<tr id="i205" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRefineVVS-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-">solvePnPRefineVVS</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.</div>
</td>
</tr>
<tr id="i206" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#solvePnPRefineVVS-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-double-">solvePnPRefineVVS</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria,
double&nbsp;VVSlambda)</code>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.</div>
</td>
</tr>
<tr id="i207" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">stereoCalibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F)</code>&nbsp;</td>
</tr>
<tr id="i208" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">stereoCalibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
int&nbsp;flags)</code>&nbsp;</td>
</tr>
<tr id="i209" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">stereoCalibrate</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>&nbsp;</td>
</tr>
<tr id="i210" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoCalibrateExtended-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">stereoCalibrateExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors)</code>
<div class="block">Calibrates a stereo camera set up.</div>
</td>
</tr>
<tr id="i211" class="rowColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoCalibrateExtended-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">stereoCalibrateExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags)</code>
<div class="block">Calibrates a stereo camera set up.</div>
</td>
</tr>
<tr id="i212" class="altColor">
<td class="colFirst"><code>static double</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoCalibrateExtended-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">stereoCalibrateExtended</a></span>(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block">Calibrates a stereo camera set up.</div>
</td>
</tr>
<tr id="i213" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q)</code>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
</td>
</tr>
<tr id="i214" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags)</code>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
</td>
</tr>
<tr id="i215" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha)</code>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
</td>
</tr>
<tr id="i216" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-org.opencv.core.Size-">stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize)</code>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
</td>
</tr>
<tr id="i217" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-org.opencv.core.Size-org.opencv.core.Rect-">stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI1)</code>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
</td>
</tr>
<tr id="i218" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-org.opencv.core.Size-org.opencv.core.Rect-org.opencv.core.Rect-">stereoRectify</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI1,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI2)</code>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
</td>
</tr>
<tr id="i219" class="rowColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectifyUncalibrated-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-">stereoRectifyUncalibrated</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H2)</code>
<div class="block">Computes a rectification transform for an uncalibrated stereo camera.</div>
</td>
</tr>
<tr id="i220" class="altColor">
<td class="colFirst"><code>static boolean</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#stereoRectifyUncalibrated-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-">stereoRectifyUncalibrated</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H2,
double&nbsp;threshold)</code>
<div class="block">Computes a rectification transform for an uncalibrated stereo camera.</div>
</td>
</tr>
<tr id="i221" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#triangulatePoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">triangulatePoints</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projPoints1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projPoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points4D)</code>
<div class="block">This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
their observations with a stereo camera.</div>
</td>
</tr>
<tr id="i222" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#undistort-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">undistort</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs)</code>
<div class="block">Transforms an image to compensate for lens distortion.</div>
</td>
</tr>
<tr id="i223" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#undistort-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">undistort</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newCameraMatrix)</code>
<div class="block">Transforms an image to compensate for lens distortion.</div>
</td>
</tr>
<tr id="i224" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#undistortPoints-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.Mat-">undistortPoints</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;src,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs)</code>
<div class="block">Computes the ideal point coordinates from the observed point coordinates.</div>
</td>
</tr>
<tr id="i225" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#undistortPoints-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">undistortPoints</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;src,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R)</code>
<div class="block">Computes the ideal point coordinates from the observed point coordinates.</div>
</td>
</tr>
<tr id="i226" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#undistortPoints-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">undistortPoints</a></span>(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;src,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P)</code>
<div class="block">Computes the ideal point coordinates from the observed point coordinates.</div>
</td>
</tr>
<tr id="i227" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#undistortPointsIter-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-">undistortPointsIter</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</code>
<div class="block"><b>Note:</b> Default version of #undistortPoints does 5 iterations to compute undistorted points.</div>
</td>
</tr>
<tr id="i228" class="altColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#validateDisparity-org.opencv.core.Mat-org.opencv.core.Mat-int-int-">validateDisparity</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cost,
int&nbsp;minDisparity,
int&nbsp;numberOfDisparities)</code>&nbsp;</td>
</tr>
<tr id="i229" class="rowColor">
<td class="colFirst"><code>static void</code></td>
<td class="colLast"><code><span class="memberNameLink"><a href="../../../org/opencv/calib3d/Calib3d.html#validateDisparity-org.opencv.core.Mat-org.opencv.core.Mat-int-int-int-">validateDisparity</a></span>(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cost,
int&nbsp;minDisparity,
int&nbsp;numberOfDisparities,
int&nbsp;disp12MaxDisp)</code>&nbsp;</td>
</tr>
</table>
<ul class="blockList">
<li class="blockList"><a name="methods.inherited.from.class.java.lang.Object">
<!-- -->
</a>
<h3>Methods inherited from class&nbsp;java.lang.Object</h3>
<code>equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait</code></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
<div class="details">
<ul class="blockList">
<li class="blockList">
<!-- ============ FIELD DETAIL =========== -->
<ul class="blockList">
<li class="blockList"><a name="field.detail">
<!-- -->
</a>
<h3>Field Detail</h3>
<a name="CALIB_CB_ACCURACY">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_ACCURACY</h4>
<pre>public static final&nbsp;int CALIB_CB_ACCURACY</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_ACCURACY">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_ADAPTIVE_THRESH">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_ADAPTIVE_THRESH</h4>
<pre>public static final&nbsp;int CALIB_CB_ADAPTIVE_THRESH</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_ADAPTIVE_THRESH">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_ASYMMETRIC_GRID">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_ASYMMETRIC_GRID</h4>
<pre>public static final&nbsp;int CALIB_CB_ASYMMETRIC_GRID</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_ASYMMETRIC_GRID">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_CLUSTERING">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_CLUSTERING</h4>
<pre>public static final&nbsp;int CALIB_CB_CLUSTERING</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_CLUSTERING">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_EXHAUSTIVE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_EXHAUSTIVE</h4>
<pre>public static final&nbsp;int CALIB_CB_EXHAUSTIVE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_EXHAUSTIVE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_FAST_CHECK">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_FAST_CHECK</h4>
<pre>public static final&nbsp;int CALIB_CB_FAST_CHECK</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_FAST_CHECK">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_FILTER_QUADS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_FILTER_QUADS</h4>
<pre>public static final&nbsp;int CALIB_CB_FILTER_QUADS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_FILTER_QUADS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_LARGER">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_LARGER</h4>
<pre>public static final&nbsp;int CALIB_CB_LARGER</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_LARGER">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_MARKER">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_MARKER</h4>
<pre>public static final&nbsp;int CALIB_CB_MARKER</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_MARKER">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_NORMALIZE_IMAGE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_NORMALIZE_IMAGE</h4>
<pre>public static final&nbsp;int CALIB_CB_NORMALIZE_IMAGE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_NORMALIZE_IMAGE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_CB_SYMMETRIC_GRID">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_CB_SYMMETRIC_GRID</h4>
<pre>public static final&nbsp;int CALIB_CB_SYMMETRIC_GRID</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_CB_SYMMETRIC_GRID">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_ASPECT_RATIO">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_ASPECT_RATIO</h4>
<pre>public static final&nbsp;int CALIB_FIX_ASPECT_RATIO</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_ASPECT_RATIO">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_FOCAL_LENGTH">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_FOCAL_LENGTH</h4>
<pre>public static final&nbsp;int CALIB_FIX_FOCAL_LENGTH</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_FOCAL_LENGTH">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_INTRINSIC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_INTRINSIC</h4>
<pre>public static final&nbsp;int CALIB_FIX_INTRINSIC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_INTRINSIC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_K1">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_K1</h4>
<pre>public static final&nbsp;int CALIB_FIX_K1</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_K1">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_K2">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_K2</h4>
<pre>public static final&nbsp;int CALIB_FIX_K2</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_K2">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_K3">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_K3</h4>
<pre>public static final&nbsp;int CALIB_FIX_K3</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_K3">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_K4">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_K4</h4>
<pre>public static final&nbsp;int CALIB_FIX_K4</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_K4">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_K5">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_K5</h4>
<pre>public static final&nbsp;int CALIB_FIX_K5</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_K5">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_K6">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_K6</h4>
<pre>public static final&nbsp;int CALIB_FIX_K6</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_K6">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_PRINCIPAL_POINT">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_PRINCIPAL_POINT</h4>
<pre>public static final&nbsp;int CALIB_FIX_PRINCIPAL_POINT</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_PRINCIPAL_POINT">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_S1_S2_S3_S4">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_S1_S2_S3_S4</h4>
<pre>public static final&nbsp;int CALIB_FIX_S1_S2_S3_S4</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_S1_S2_S3_S4">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_TANGENT_DIST">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_TANGENT_DIST</h4>
<pre>public static final&nbsp;int CALIB_FIX_TANGENT_DIST</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_TANGENT_DIST">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_FIX_TAUX_TAUY">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_FIX_TAUX_TAUY</h4>
<pre>public static final&nbsp;int CALIB_FIX_TAUX_TAUY</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_FIX_TAUX_TAUY">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_HAND_EYE_ANDREFF">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_HAND_EYE_ANDREFF</h4>
<pre>public static final&nbsp;int CALIB_HAND_EYE_ANDREFF</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_HAND_EYE_ANDREFF">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_HAND_EYE_DANIILIDIS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_HAND_EYE_DANIILIDIS</h4>
<pre>public static final&nbsp;int CALIB_HAND_EYE_DANIILIDIS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_HAND_EYE_DANIILIDIS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_HAND_EYE_HORAUD">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_HAND_EYE_HORAUD</h4>
<pre>public static final&nbsp;int CALIB_HAND_EYE_HORAUD</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_HAND_EYE_HORAUD">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_HAND_EYE_PARK">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_HAND_EYE_PARK</h4>
<pre>public static final&nbsp;int CALIB_HAND_EYE_PARK</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_HAND_EYE_PARK">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_HAND_EYE_TSAI">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_HAND_EYE_TSAI</h4>
<pre>public static final&nbsp;int CALIB_HAND_EYE_TSAI</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_HAND_EYE_TSAI">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_NINTRINSIC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_NINTRINSIC</h4>
<pre>public static final&nbsp;int CALIB_NINTRINSIC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_NINTRINSIC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_RATIONAL_MODEL">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_RATIONAL_MODEL</h4>
<pre>public static final&nbsp;int CALIB_RATIONAL_MODEL</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_RATIONAL_MODEL">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_ROBOT_WORLD_HAND_EYE_LI">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_ROBOT_WORLD_HAND_EYE_LI</h4>
<pre>public static final&nbsp;int CALIB_ROBOT_WORLD_HAND_EYE_LI</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_ROBOT_WORLD_HAND_EYE_LI">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_ROBOT_WORLD_HAND_EYE_SHAH">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_ROBOT_WORLD_HAND_EYE_SHAH</h4>
<pre>public static final&nbsp;int CALIB_ROBOT_WORLD_HAND_EYE_SHAH</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_ROBOT_WORLD_HAND_EYE_SHAH">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_SAME_FOCAL_LENGTH">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_SAME_FOCAL_LENGTH</h4>
<pre>public static final&nbsp;int CALIB_SAME_FOCAL_LENGTH</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_SAME_FOCAL_LENGTH">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_THIN_PRISM_MODEL">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_THIN_PRISM_MODEL</h4>
<pre>public static final&nbsp;int CALIB_THIN_PRISM_MODEL</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_THIN_PRISM_MODEL">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_TILTED_MODEL">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_TILTED_MODEL</h4>
<pre>public static final&nbsp;int CALIB_TILTED_MODEL</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_TILTED_MODEL">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_USE_EXTRINSIC_GUESS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_USE_EXTRINSIC_GUESS</h4>
<pre>public static final&nbsp;int CALIB_USE_EXTRINSIC_GUESS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_USE_EXTRINSIC_GUESS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_USE_INTRINSIC_GUESS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_USE_INTRINSIC_GUESS</h4>
<pre>public static final&nbsp;int CALIB_USE_INTRINSIC_GUESS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_USE_INTRINSIC_GUESS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_USE_LU">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_USE_LU</h4>
<pre>public static final&nbsp;int CALIB_USE_LU</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_USE_LU">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_USE_QR">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_USE_QR</h4>
<pre>public static final&nbsp;int CALIB_USE_QR</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_USE_QR">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_ZERO_DISPARITY">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_ZERO_DISPARITY</h4>
<pre>public static final&nbsp;int CALIB_ZERO_DISPARITY</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_ZERO_DISPARITY">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CALIB_ZERO_TANGENT_DIST">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CALIB_ZERO_TANGENT_DIST</h4>
<pre>public static final&nbsp;int CALIB_ZERO_TANGENT_DIST</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CALIB_ZERO_TANGENT_DIST">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CirclesGridFinderParameters_ASYMMETRIC_GRID">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CirclesGridFinderParameters_ASYMMETRIC_GRID</h4>
<pre>public static final&nbsp;int CirclesGridFinderParameters_ASYMMETRIC_GRID</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CirclesGridFinderParameters_ASYMMETRIC_GRID">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CirclesGridFinderParameters_SYMMETRIC_GRID">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CirclesGridFinderParameters_SYMMETRIC_GRID</h4>
<pre>public static final&nbsp;int CirclesGridFinderParameters_SYMMETRIC_GRID</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CirclesGridFinderParameters_SYMMETRIC_GRID">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CV_DLS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CV_DLS</h4>
<pre>public static final&nbsp;int CV_DLS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CV_DLS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CV_EPNP">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CV_EPNP</h4>
<pre>public static final&nbsp;int CV_EPNP</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CV_EPNP">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CV_ITERATIVE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CV_ITERATIVE</h4>
<pre>public static final&nbsp;int CV_ITERATIVE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CV_ITERATIVE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CV_P3P">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CV_P3P</h4>
<pre>public static final&nbsp;int CV_P3P</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CV_P3P">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CvLevMarq_CALC_J">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CvLevMarq_CALC_J</h4>
<pre>public static final&nbsp;int CvLevMarq_CALC_J</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CvLevMarq_CALC_J">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CvLevMarq_CHECK_ERR">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CvLevMarq_CHECK_ERR</h4>
<pre>public static final&nbsp;int CvLevMarq_CHECK_ERR</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CvLevMarq_CHECK_ERR">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CvLevMarq_DONE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CvLevMarq_DONE</h4>
<pre>public static final&nbsp;int CvLevMarq_DONE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CvLevMarq_DONE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="CvLevMarq_STARTED">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>CvLevMarq_STARTED</h4>
<pre>public static final&nbsp;int CvLevMarq_STARTED</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.CvLevMarq_STARTED">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_CHECK_COND">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_CHECK_COND</h4>
<pre>public static final&nbsp;int fisheye_CALIB_CHECK_COND</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_CHECK_COND">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_FOCAL_LENGTH">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_FOCAL_LENGTH</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_FOCAL_LENGTH</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_FOCAL_LENGTH">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_INTRINSIC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_INTRINSIC</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_INTRINSIC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_INTRINSIC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_K1">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_K1</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_K1</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_K1">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_K2">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_K2</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_K2</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_K2">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_K3">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_K3</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_K3</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_K3">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_K4">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_K4</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_K4</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_K4">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_PRINCIPAL_POINT">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_PRINCIPAL_POINT</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_PRINCIPAL_POINT</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_PRINCIPAL_POINT">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_FIX_SKEW">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_FIX_SKEW</h4>
<pre>public static final&nbsp;int fisheye_CALIB_FIX_SKEW</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_FIX_SKEW">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_RECOMPUTE_EXTRINSIC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_RECOMPUTE_EXTRINSIC</h4>
<pre>public static final&nbsp;int fisheye_CALIB_RECOMPUTE_EXTRINSIC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_RECOMPUTE_EXTRINSIC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_USE_INTRINSIC_GUESS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_USE_INTRINSIC_GUESS</h4>
<pre>public static final&nbsp;int fisheye_CALIB_USE_INTRINSIC_GUESS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_USE_INTRINSIC_GUESS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="fisheye_CALIB_ZERO_DISPARITY">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_CALIB_ZERO_DISPARITY</h4>
<pre>public static final&nbsp;int fisheye_CALIB_ZERO_DISPARITY</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.fisheye_CALIB_ZERO_DISPARITY">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="FM_7POINT">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>FM_7POINT</h4>
<pre>public static final&nbsp;int FM_7POINT</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.FM_7POINT">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="FM_8POINT">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>FM_8POINT</h4>
<pre>public static final&nbsp;int FM_8POINT</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.FM_8POINT">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="FM_LMEDS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>FM_LMEDS</h4>
<pre>public static final&nbsp;int FM_LMEDS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.FM_LMEDS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="FM_RANSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>FM_RANSAC</h4>
<pre>public static final&nbsp;int FM_RANSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.FM_RANSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="LMEDS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>LMEDS</h4>
<pre>public static final&nbsp;int LMEDS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.LMEDS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="LOCAL_OPTIM_GC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>LOCAL_OPTIM_GC</h4>
<pre>public static final&nbsp;int LOCAL_OPTIM_GC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.LOCAL_OPTIM_GC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="LOCAL_OPTIM_INNER_AND_ITER_LO">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>LOCAL_OPTIM_INNER_AND_ITER_LO</h4>
<pre>public static final&nbsp;int LOCAL_OPTIM_INNER_AND_ITER_LO</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.LOCAL_OPTIM_INNER_AND_ITER_LO">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="LOCAL_OPTIM_INNER_LO">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>LOCAL_OPTIM_INNER_LO</h4>
<pre>public static final&nbsp;int LOCAL_OPTIM_INNER_LO</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.LOCAL_OPTIM_INNER_LO">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="LOCAL_OPTIM_NULL">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>LOCAL_OPTIM_NULL</h4>
<pre>public static final&nbsp;int LOCAL_OPTIM_NULL</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.LOCAL_OPTIM_NULL">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="LOCAL_OPTIM_SIGMA">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>LOCAL_OPTIM_SIGMA</h4>
<pre>public static final&nbsp;int LOCAL_OPTIM_SIGMA</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.LOCAL_OPTIM_SIGMA">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="NEIGH_FLANN_KNN">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>NEIGH_FLANN_KNN</h4>
<pre>public static final&nbsp;int NEIGH_FLANN_KNN</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.NEIGH_FLANN_KNN">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="NEIGH_FLANN_RADIUS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>NEIGH_FLANN_RADIUS</h4>
<pre>public static final&nbsp;int NEIGH_FLANN_RADIUS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.NEIGH_FLANN_RADIUS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="NEIGH_GRID">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>NEIGH_GRID</h4>
<pre>public static final&nbsp;int NEIGH_GRID</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.NEIGH_GRID">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="PROJ_SPHERICAL_EQRECT">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>PROJ_SPHERICAL_EQRECT</h4>
<pre>public static final&nbsp;int PROJ_SPHERICAL_EQRECT</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.PROJ_SPHERICAL_EQRECT">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="PROJ_SPHERICAL_ORTHO">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>PROJ_SPHERICAL_ORTHO</h4>
<pre>public static final&nbsp;int PROJ_SPHERICAL_ORTHO</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.PROJ_SPHERICAL_ORTHO">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="RANSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>RANSAC</h4>
<pre>public static final&nbsp;int RANSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.RANSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="RHO">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>RHO</h4>
<pre>public static final&nbsp;int RHO</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.RHO">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SAMPLING_NAPSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SAMPLING_NAPSAC</h4>
<pre>public static final&nbsp;int SAMPLING_NAPSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SAMPLING_NAPSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SAMPLING_PROGRESSIVE_NAPSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SAMPLING_PROGRESSIVE_NAPSAC</h4>
<pre>public static final&nbsp;int SAMPLING_PROGRESSIVE_NAPSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SAMPLING_PROGRESSIVE_NAPSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SAMPLING_PROSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SAMPLING_PROSAC</h4>
<pre>public static final&nbsp;int SAMPLING_PROSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SAMPLING_PROSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SAMPLING_UNIFORM">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SAMPLING_UNIFORM</h4>
<pre>public static final&nbsp;int SAMPLING_UNIFORM</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SAMPLING_UNIFORM">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SCORE_METHOD_LMEDS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SCORE_METHOD_LMEDS</h4>
<pre>public static final&nbsp;int SCORE_METHOD_LMEDS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SCORE_METHOD_LMEDS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SCORE_METHOD_MAGSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SCORE_METHOD_MAGSAC</h4>
<pre>public static final&nbsp;int SCORE_METHOD_MAGSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SCORE_METHOD_MAGSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SCORE_METHOD_MSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SCORE_METHOD_MSAC</h4>
<pre>public static final&nbsp;int SCORE_METHOD_MSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SCORE_METHOD_MSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SCORE_METHOD_RANSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SCORE_METHOD_RANSAC</h4>
<pre>public static final&nbsp;int SCORE_METHOD_RANSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SCORE_METHOD_RANSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_AP3P">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_AP3P</h4>
<pre>public static final&nbsp;int SOLVEPNP_AP3P</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_AP3P">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_DLS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_DLS</h4>
<pre>public static final&nbsp;int SOLVEPNP_DLS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_DLS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_EPNP">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_EPNP</h4>
<pre>public static final&nbsp;int SOLVEPNP_EPNP</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_EPNP">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_IPPE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_IPPE</h4>
<pre>public static final&nbsp;int SOLVEPNP_IPPE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_IPPE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_IPPE_SQUARE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_IPPE_SQUARE</h4>
<pre>public static final&nbsp;int SOLVEPNP_IPPE_SQUARE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_IPPE_SQUARE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_ITERATIVE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_ITERATIVE</h4>
<pre>public static final&nbsp;int SOLVEPNP_ITERATIVE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_ITERATIVE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_MAX_COUNT">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_MAX_COUNT</h4>
<pre>public static final&nbsp;int SOLVEPNP_MAX_COUNT</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_MAX_COUNT">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_P3P">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_P3P</h4>
<pre>public static final&nbsp;int SOLVEPNP_P3P</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_P3P">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_SQPNP">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_SQPNP</h4>
<pre>public static final&nbsp;int SOLVEPNP_SQPNP</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_SQPNP">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="SOLVEPNP_UPNP">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>SOLVEPNP_UPNP</h4>
<pre>public static final&nbsp;int SOLVEPNP_UPNP</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.SOLVEPNP_UPNP">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="USAC_ACCURATE">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>USAC_ACCURATE</h4>
<pre>public static final&nbsp;int USAC_ACCURATE</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.USAC_ACCURATE">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="USAC_DEFAULT">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>USAC_DEFAULT</h4>
<pre>public static final&nbsp;int USAC_DEFAULT</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.USAC_DEFAULT">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="USAC_FAST">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>USAC_FAST</h4>
<pre>public static final&nbsp;int USAC_FAST</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.USAC_FAST">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="USAC_FM_8PTS">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>USAC_FM_8PTS</h4>
<pre>public static final&nbsp;int USAC_FM_8PTS</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.USAC_FM_8PTS">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="USAC_MAGSAC">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>USAC_MAGSAC</h4>
<pre>public static final&nbsp;int USAC_MAGSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.USAC_MAGSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="USAC_PARALLEL">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>USAC_PARALLEL</h4>
<pre>public static final&nbsp;int USAC_PARALLEL</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.USAC_PARALLEL">Constant Field Values</a></dd>
</dl>
</li>
</ul>
<a name="USAC_PROSAC">
<!-- -->
</a>
<ul class="blockListLast">
<li class="blockList">
<h4>USAC_PROSAC</h4>
<pre>public static final&nbsp;int USAC_PROSAC</pre>
<dl>
<dt><span class="seeLabel">See Also:</span></dt>
<dd><a href="../../../constant-values.html#org.opencv.calib3d.Calib3d.USAC_PROSAC">Constant Field Values</a></dd>
</dl>
</li>
</ul>
</li>
</ul>
<!-- ========= CONSTRUCTOR DETAIL ======== -->
<ul class="blockList">
<li class="blockList"><a name="constructor.detail">
<!-- -->
</a>
<h3>Constructor Detail</h3>
<a name="Calib3d--">
<!-- -->
</a>
<ul class="blockListLast">
<li class="blockList">
<h4>Calib3d</h4>
<pre>public&nbsp;Calib3d()</pre>
</li>
</ul>
</li>
</ul>
<!-- ============ METHOD DETAIL ========== -->
<ul class="blockList">
<li class="blockList"><a name="method.detail">
<!-- -->
</a>
<h3>Method Detail</h3>
<a name="calibrateCamera-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCamera</h4>
<pre>public static&nbsp;double&nbsp;calibrateCamera(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs)</pre>
</li>
</ul>
<a name="calibrateCamera-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCamera</h4>
<pre>public static&nbsp;double&nbsp;calibrateCamera(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags)</pre>
</li>
</ul>
<a name="calibrateCamera-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCamera</h4>
<pre>public static&nbsp;double&nbsp;calibrateCamera(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
</li>
</ul>
<a name="calibrateCameraExtended-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraExtended</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors)</pre>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space (e.g. std::vector&lt;std::vector&lt;cv::Vec3f&gt;&gt;). The outer
vector contains as many elements as the number of pattern views. If the same calibration pattern
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
possible to use partially occluded patterns or even different patterns in different views. Then,
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
In the old interface all the vectors of object points from different views are concatenated
together.</dd>
<dd><code>imagePoints</code> - In the new interface it is a vector of vectors of the projections of calibration
pattern points (e.g. std::vector&lt;std::vector&lt;cv::Vec2f&gt;&gt;). imagePoints.size() and
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
respectively. In the old interface all the vectors of object points from different views are
concatenated together.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the camera intrinsic matrix.</dd>
<dd><code>cameraMatrix</code> - Input/output 3x3 floating-point camera intrinsic matrix
\(\cameramatrix{A}\) . If REF: CALIB_USE_INTRINSIC_GUESS
and/or REF: CALIB_FIX_ASPECT_RATIO, REF: CALIB_FIX_PRINCIPAL_POINT or REF: CALIB_FIX_FOCAL_LENGTH
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.</dd>
<dd><code>distCoeffs</code> - Input/output vector of distortion coefficients
\(\distcoeffs\).</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors (REF: Rodrigues ) estimated for each pattern view
(e.g. std::vector&lt;cv::Mat&gt;&gt;). That is, each i-th rotation vector together with the corresponding
i-th translation vector (see the next output parameter description) brings the calibration pattern
from the object coordinate space (in which object points are specified) to the camera coordinate
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
space.</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view, see parameter
describtion above.</dd>
<dd><code>stdDeviationsIntrinsics</code> - Output vector of standard deviations estimated for intrinsic
parameters. Order of deviations values:
\((f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\) If one of parameters is not estimated, it's deviation is equals to zero.</dd>
<dd><code>stdDeviationsExtrinsics</code> - Output vector of standard deviations estimated for extrinsic
parameters. Order of deviations values: \((R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\) where M is
the number of pattern views. \(R_i, T_i\) are concatenated 1x3 vectors.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.
<ul>
<li>
REF: CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use REF: solvePnP instead.
</li>
<li>
REF: CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when
REF: CALIB_USE_INTRINSIC_GUESS is set too.
</li>
<li>
REF: CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When
REF: CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
</li>
<li>
REF: CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \((p_1, p_2)\) are set
to zeros and stay zero.
</li>
<li>
REF: CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
REF: CALIB_USE_INTRINSIC_GUESS is set.
</li>
<li>
REF: CALIB_FIX_K1,..., REF: CALIB_FIX_K6 The corresponding radial distortion
coefficient is not changed during the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients or more.
</li>
<li>
REF: CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients or more.
</li>
<li>
REF: CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients.
</li>
<li>
REF: CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on CITE: Zhang2000 and CITE: BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see REF: findChessboardCorners). Currently, initialization of intrinsic
parameters (when REF: CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.
The algorithm performs the following steps:
<ul>
<li>
Compute the initial intrinsic parameters (the option only available for planar calibration
patterns) or read them from the input parameters. The distortion coefficients are all set to
zeros initially unless some of CALIB_FIX_K? are specified.
</li>
</ul>
<ul>
<li>
Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
done using REF: solvePnP .
</li>
</ul>
<ul>
<li>
Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
that is, the total sum of squared distances between the observed feature points imagePoints and
the projected (using the current estimates for camera parameters and the poses) object points
objectPoints. See REF: projectPoints for details.
</li>
</ul>
<b>Note:</b>
If you use a non-square (i.e. non-N-by-N) grid and REF: findChessboardCorners for calibration,
and REF: calibrateCamera returns bad values (zero distortion coefficients, \(c_x\) and
\(c_y\) very far from the image center, and/or large differences between \(f_x\) and
\(f_y\) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
instead of using patternSize=cvSize(cols,rows) in REF: findChessboardCorners.
SEE:
calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
undistort</dd>
</dl>
</li>
</ul>
<a name="calibrateCameraExtended-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraExtended</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags)</pre>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space (e.g. std::vector&lt;std::vector&lt;cv::Vec3f&gt;&gt;). The outer
vector contains as many elements as the number of pattern views. If the same calibration pattern
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
possible to use partially occluded patterns or even different patterns in different views. Then,
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
In the old interface all the vectors of object points from different views are concatenated
together.</dd>
<dd><code>imagePoints</code> - In the new interface it is a vector of vectors of the projections of calibration
pattern points (e.g. std::vector&lt;std::vector&lt;cv::Vec2f&gt;&gt;). imagePoints.size() and
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
respectively. In the old interface all the vectors of object points from different views are
concatenated together.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the camera intrinsic matrix.</dd>
<dd><code>cameraMatrix</code> - Input/output 3x3 floating-point camera intrinsic matrix
\(\cameramatrix{A}\) . If REF: CALIB_USE_INTRINSIC_GUESS
and/or REF: CALIB_FIX_ASPECT_RATIO, REF: CALIB_FIX_PRINCIPAL_POINT or REF: CALIB_FIX_FOCAL_LENGTH
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.</dd>
<dd><code>distCoeffs</code> - Input/output vector of distortion coefficients
\(\distcoeffs\).</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors (REF: Rodrigues ) estimated for each pattern view
(e.g. std::vector&lt;cv::Mat&gt;&gt;). That is, each i-th rotation vector together with the corresponding
i-th translation vector (see the next output parameter description) brings the calibration pattern
from the object coordinate space (in which object points are specified) to the camera coordinate
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
space.</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view, see parameter
describtion above.</dd>
<dd><code>stdDeviationsIntrinsics</code> - Output vector of standard deviations estimated for intrinsic
parameters. Order of deviations values:
\((f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\) If one of parameters is not estimated, it's deviation is equals to zero.</dd>
<dd><code>stdDeviationsExtrinsics</code> - Output vector of standard deviations estimated for extrinsic
parameters. Order of deviations values: \((R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\) where M is
the number of pattern views. \(R_i, T_i\) are concatenated 1x3 vectors.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use REF: solvePnP instead.
</li>
<li>
REF: CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when
REF: CALIB_USE_INTRINSIC_GUESS is set too.
</li>
<li>
REF: CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When
REF: CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
</li>
<li>
REF: CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \((p_1, p_2)\) are set
to zeros and stay zero.
</li>
<li>
REF: CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
REF: CALIB_USE_INTRINSIC_GUESS is set.
</li>
<li>
REF: CALIB_FIX_K1,..., REF: CALIB_FIX_K6 The corresponding radial distortion
coefficient is not changed during the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients or more.
</li>
<li>
REF: CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients or more.
</li>
<li>
REF: CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients.
</li>
<li>
REF: CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on CITE: Zhang2000 and CITE: BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see REF: findChessboardCorners). Currently, initialization of intrinsic
parameters (when REF: CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.
The algorithm performs the following steps:
<ul>
<li>
Compute the initial intrinsic parameters (the option only available for planar calibration
patterns) or read them from the input parameters. The distortion coefficients are all set to
zeros initially unless some of CALIB_FIX_K? are specified.
</li>
</ul>
<ul>
<li>
Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
done using REF: solvePnP .
</li>
</ul>
<ul>
<li>
Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
that is, the total sum of squared distances between the observed feature points imagePoints and
the projected (using the current estimates for camera parameters and the poses) object points
objectPoints. See REF: projectPoints for details.
</li>
</ul>
<b>Note:</b>
If you use a non-square (i.e. non-N-by-N) grid and REF: findChessboardCorners for calibration,
and REF: calibrateCamera returns bad values (zero distortion coefficients, \(c_x\) and
\(c_y\) very far from the image center, and/or large differences between \(f_x\) and
\(f_y\) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
instead of using patternSize=cvSize(cols,rows) in REF: findChessboardCorners.
SEE:
calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
undistort</dd>
</dl>
</li>
</ul>
<a name="calibrateCameraExtended-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraExtended</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration
pattern.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - In the new interface it is a vector of vectors of calibration pattern points in
the calibration pattern coordinate space (e.g. std::vector&lt;std::vector&lt;cv::Vec3f&gt;&gt;). The outer
vector contains as many elements as the number of pattern views. If the same calibration pattern
is shown in each view and it is fully visible, all the vectors will be the same. Although, it is
possible to use partially occluded patterns or even different patterns in different views. Then,
the vectors will be different. Although the points are 3D, they all lie in the calibration pattern's
XY coordinate plane (thus 0 in the Z-coordinate), if the used calibration pattern is a planar rig.
In the old interface all the vectors of object points from different views are concatenated
together.</dd>
<dd><code>imagePoints</code> - In the new interface it is a vector of vectors of the projections of calibration
pattern points (e.g. std::vector&lt;std::vector&lt;cv::Vec2f&gt;&gt;). imagePoints.size() and
objectPoints.size(), and imagePoints[i].size() and objectPoints[i].size() for each i, must be equal,
respectively. In the old interface all the vectors of object points from different views are
concatenated together.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the camera intrinsic matrix.</dd>
<dd><code>cameraMatrix</code> - Input/output 3x3 floating-point camera intrinsic matrix
\(\cameramatrix{A}\) . If REF: CALIB_USE_INTRINSIC_GUESS
and/or REF: CALIB_FIX_ASPECT_RATIO, REF: CALIB_FIX_PRINCIPAL_POINT or REF: CALIB_FIX_FOCAL_LENGTH
are specified, some or all of fx, fy, cx, cy must be initialized before calling the function.</dd>
<dd><code>distCoeffs</code> - Input/output vector of distortion coefficients
\(\distcoeffs\).</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors (REF: Rodrigues ) estimated for each pattern view
(e.g. std::vector&lt;cv::Mat&gt;&gt;). That is, each i-th rotation vector together with the corresponding
i-th translation vector (see the next output parameter description) brings the calibration pattern
from the object coordinate space (in which object points are specified) to the camera coordinate
space. In more technical terms, the tuple of the i-th rotation and translation vector performs
a change of basis from object coordinate space to camera coordinate space. Due to its duality, this
tuple is equivalent to the position of the calibration pattern with respect to the camera coordinate
space.</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view, see parameter
describtion above.</dd>
<dd><code>stdDeviationsIntrinsics</code> - Output vector of standard deviations estimated for intrinsic
parameters. Order of deviations values:
\((f_x, f_y, c_x, c_y, k_1, k_2, p_1, p_2, k_3, k_4, k_5, k_6 , s_1, s_2, s_3,
s_4, \tau_x, \tau_y)\) If one of parameters is not estimated, it's deviation is equals to zero.</dd>
<dd><code>stdDeviationsExtrinsics</code> - Output vector of standard deviations estimated for extrinsic
parameters. Order of deviations values: \((R_0, T_0, \dotsc , R_{M - 1}, T_{M - 1})\) where M is
the number of pattern views. \(R_i, T_i\) are concatenated 1x3 vectors.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
Note, that if intrinsic parameters are known, there is no need to use this function just to
estimate extrinsic parameters. Use REF: solvePnP instead.
</li>
<li>
REF: CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when
REF: CALIB_USE_INTRINSIC_GUESS is set too.
</li>
<li>
REF: CALIB_FIX_ASPECT_RATIO The functions consider only fy as a free parameter. The
ratio fx/fy stays the same as in the input cameraMatrix . When
REF: CALIB_USE_INTRINSIC_GUESS is not set, the actual input values of fx and fy are
ignored, only their ratio is computed and used further.
</li>
<li>
REF: CALIB_ZERO_TANGENT_DIST Tangential distortion coefficients \((p_1, p_2)\) are set
to zeros and stay zero.
</li>
<li>
REF: CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global optimization if
REF: CALIB_USE_INTRINSIC_GUESS is set.
</li>
<li>
REF: CALIB_FIX_K1,..., REF: CALIB_FIX_K6 The corresponding radial distortion
coefficient is not changed during the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is
set, the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_RATIONAL_MODEL Coefficients k4, k5, and k6 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the rational model and return 8 coefficients or more.
</li>
<li>
REF: CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients or more.
</li>
<li>
REF: CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients.
</li>
<li>
REF: CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.</dd>
<dd><code>criteria</code> - Termination criteria for the iterative optimization algorithm.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on CITE: Zhang2000 and CITE: BouguetMCT . The coordinates of 3D object
points and their corresponding 2D projections in each view must be specified. That may be achieved
by using an object with known geometry and easily detectable feature points. Such an object is
called a calibration rig or calibration pattern, and OpenCV has built-in support for a chessboard as
a calibration rig (see REF: findChessboardCorners). Currently, initialization of intrinsic
parameters (when REF: CALIB_USE_INTRINSIC_GUESS is not set) is only implemented for planar calibration
patterns (where Z-coordinates of the object points must be all zeros). 3D calibration rigs can also
be used as long as initial cameraMatrix is provided.
The algorithm performs the following steps:
<ul>
<li>
Compute the initial intrinsic parameters (the option only available for planar calibration
patterns) or read them from the input parameters. The distortion coefficients are all set to
zeros initially unless some of CALIB_FIX_K? are specified.
</li>
</ul>
<ul>
<li>
Estimate the initial camera pose as if the intrinsic parameters have been already known. This is
done using REF: solvePnP .
</li>
</ul>
<ul>
<li>
Run the global Levenberg-Marquardt optimization algorithm to minimize the reprojection error,
that is, the total sum of squared distances between the observed feature points imagePoints and
the projected (using the current estimates for camera parameters and the poses) object points
objectPoints. See REF: projectPoints for details.
</li>
</ul>
<b>Note:</b>
If you use a non-square (i.e. non-N-by-N) grid and REF: findChessboardCorners for calibration,
and REF: calibrateCamera returns bad values (zero distortion coefficients, \(c_x\) and
\(c_y\) very far from the image center, and/or large differences between \(f_x\) and
\(f_y\) (ratios of 10:1 or more)), then you are probably using patternSize=cvSize(rows,cols)
instead of using patternSize=cvSize(cols,rows) in REF: findChessboardCorners.
SEE:
calibrateCameraRO, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate,
undistort</dd>
</dl>
</li>
</ul>
<a name="calibrateCameraRO-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraRO</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraRO(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints)</pre>
</li>
</ul>
<a name="calibrateCameraRO-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraRO</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraRO(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
int&nbsp;flags)</pre>
</li>
</ul>
<a name="calibrateCameraRO-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraRO</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraRO(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
</li>
</ul>
<a name="calibrateCameraROExtended-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraROExtended</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraROExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors)</pre>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
This function is an extension of #calibrateCamera with the method of releasing object which was
proposed in CITE: strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
targets (calibration plates), this method can dramatically improve the precision of the estimated
camera parameters. Both the object-releasing method and standard method are supported by this
function. Use the parameter <b>iFixedPoint</b> for method selection. In the internal implementation,
#calibrateCamera is a wrapper for this function.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of calibration pattern points in the calibration pattern
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
the identical calibration board must be used in each view and it must be fully visible, and all
objectPoints[i] must be the same and all points should be roughly close to a plane. <b>The calibration
target has to be rigid, or at least static if the camera (rather than the calibration target) is
shifted for grabbing images.</b></dd>
<dd><code>imagePoints</code> - Vector of vectors of the projections of calibration pattern points. See
#calibrateCamera for details.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the intrinsic camera matrix.</dd>
<dd><code>iFixedPoint</code> - The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
a switch for calibration method selection. If object-releasing method to be used, pass in the
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
make standard calibration method selected. Usually the top-right corner point of the calibration
board grid is recommended to be fixed when object-releasing method being utilized. According to
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 floating-point camera matrix. See #calibrateCamera for details.</dd>
<dd><code>distCoeffs</code> - Output vector of distortion coefficients. See #calibrateCamera for details.</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
for details.</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view.</dd>
<dd><code>newObjPoints</code> - The updated output vector of calibration pattern points. The coordinates might
be scaled based on three fixed points. The returned coordinates are accurate only if the above
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
is ignored with standard calibration method.</dd>
<dd><code>stdDeviationsIntrinsics</code> - Output vector of standard deviations estimated for intrinsic parameters.
See #calibrateCamera for details.</dd>
<dd><code>stdDeviationsExtrinsics</code> - Output vector of standard deviations estimated for extrinsic parameters.
See #calibrateCamera for details.</dd>
<dd><code>stdDeviationsObjPoints</code> - Output vector of standard deviations estimated for refined coordinates
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
parameter is ignored with standard calibration method.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
less precise and less stable in some rare cases.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on CITE: Zhang2000, CITE: BouguetMCT and CITE: strobl2011iccv. See
#calibrateCamera for other detailed explanations.
SEE:
calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort</dd>
</dl>
</li>
</ul>
<a name="calibrateCameraROExtended-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraROExtended</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraROExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags)</pre>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
This function is an extension of #calibrateCamera with the method of releasing object which was
proposed in CITE: strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
targets (calibration plates), this method can dramatically improve the precision of the estimated
camera parameters. Both the object-releasing method and standard method are supported by this
function. Use the parameter <b>iFixedPoint</b> for method selection. In the internal implementation,
#calibrateCamera is a wrapper for this function.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of calibration pattern points in the calibration pattern
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
the identical calibration board must be used in each view and it must be fully visible, and all
objectPoints[i] must be the same and all points should be roughly close to a plane. <b>The calibration
target has to be rigid, or at least static if the camera (rather than the calibration target) is
shifted for grabbing images.</b></dd>
<dd><code>imagePoints</code> - Vector of vectors of the projections of calibration pattern points. See
#calibrateCamera for details.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the intrinsic camera matrix.</dd>
<dd><code>iFixedPoint</code> - The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
a switch for calibration method selection. If object-releasing method to be used, pass in the
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
make standard calibration method selected. Usually the top-right corner point of the calibration
board grid is recommended to be fixed when object-releasing method being utilized. According to
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 floating-point camera matrix. See #calibrateCamera for details.</dd>
<dd><code>distCoeffs</code> - Output vector of distortion coefficients. See #calibrateCamera for details.</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
for details.</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view.</dd>
<dd><code>newObjPoints</code> - The updated output vector of calibration pattern points. The coordinates might
be scaled based on three fixed points. The returned coordinates are accurate only if the above
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
is ignored with standard calibration method.</dd>
<dd><code>stdDeviationsIntrinsics</code> - Output vector of standard deviations estimated for intrinsic parameters.
See #calibrateCamera for details.</dd>
<dd><code>stdDeviationsExtrinsics</code> - Output vector of standard deviations estimated for extrinsic parameters.
See #calibrateCamera for details.</dd>
<dd><code>stdDeviationsObjPoints</code> - Output vector of standard deviations estimated for refined coordinates
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
parameter is ignored with standard calibration method.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of some predefined values. See
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
less precise and less stable in some rare cases.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on CITE: Zhang2000, CITE: BouguetMCT and CITE: strobl2011iccv. See
#calibrateCamera for other detailed explanations.
SEE:
calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort</dd>
</dl>
</li>
</ul>
<a name="calibrateCameraROExtended-java.util.List-java.util.List-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateCameraROExtended</h4>
<pre>public static&nbsp;double&nbsp;calibrateCameraROExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
int&nbsp;iFixedPoint,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsIntrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsExtrinsics,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;stdDeviationsObjPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block">Finds the camera intrinsic and extrinsic parameters from several views of a calibration pattern.
This function is an extension of #calibrateCamera with the method of releasing object which was
proposed in CITE: strobl2011iccv. In many common cases with inaccurate, unmeasured, roughly planar
targets (calibration plates), this method can dramatically improve the precision of the estimated
camera parameters. Both the object-releasing method and standard method are supported by this
function. Use the parameter <b>iFixedPoint</b> for method selection. In the internal implementation,
#calibrateCamera is a wrapper for this function.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of calibration pattern points in the calibration pattern
coordinate space. See #calibrateCamera for details. If the method of releasing object to be used,
the identical calibration board must be used in each view and it must be fully visible, and all
objectPoints[i] must be the same and all points should be roughly close to a plane. <b>The calibration
target has to be rigid, or at least static if the camera (rather than the calibration target) is
shifted for grabbing images.</b></dd>
<dd><code>imagePoints</code> - Vector of vectors of the projections of calibration pattern points. See
#calibrateCamera for details.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the intrinsic camera matrix.</dd>
<dd><code>iFixedPoint</code> - The index of the 3D object point in objectPoints[0] to be fixed. It also acts as
a switch for calibration method selection. If object-releasing method to be used, pass in the
parameter in the range of [1, objectPoints[0].size()-2], otherwise a value out of this range will
make standard calibration method selected. Usually the top-right corner point of the calibration
board grid is recommended to be fixed when object-releasing method being utilized. According to
\cite strobl2011iccv, two other points are also fixed. In this implementation, objectPoints[0].front
and objectPoints[0].back.z are used. With object-releasing method, accurate rvecs, tvecs and
newObjPoints are only possible if coordinates of these three fixed points are accurate enough.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 floating-point camera matrix. See #calibrateCamera for details.</dd>
<dd><code>distCoeffs</code> - Output vector of distortion coefficients. See #calibrateCamera for details.</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors estimated for each pattern view. See #calibrateCamera
for details.</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view.</dd>
<dd><code>newObjPoints</code> - The updated output vector of calibration pattern points. The coordinates might
be scaled based on three fixed points. The returned coordinates are accurate only if the above
mentioned three fixed points are accurate. If not needed, noArray() can be passed in. This parameter
is ignored with standard calibration method.</dd>
<dd><code>stdDeviationsIntrinsics</code> - Output vector of standard deviations estimated for intrinsic parameters.
See #calibrateCamera for details.</dd>
<dd><code>stdDeviationsExtrinsics</code> - Output vector of standard deviations estimated for extrinsic parameters.
See #calibrateCamera for details.</dd>
<dd><code>stdDeviationsObjPoints</code> - Output vector of standard deviations estimated for refined coordinates
of calibration pattern points. It has the same size and order as objectPoints[0] vector. This
parameter is ignored with standard calibration method.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of some predefined values. See
#calibrateCamera for details. If the method of releasing object is used, the calibration time may
be much longer. CALIB_USE_QR or CALIB_USE_LU could be used for faster calibration with potentially
less precise and less stable in some rare cases.</dd>
<dd><code>criteria</code> - Termination criteria for the iterative optimization algorithm.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>the overall RMS re-projection error.
The function estimates the intrinsic camera parameters and extrinsic parameters for each of the
views. The algorithm is based on CITE: Zhang2000, CITE: BouguetMCT and CITE: strobl2011iccv. See
#calibrateCamera for other detailed explanations.
SEE:
calibrateCamera, findChessboardCorners, solvePnP, initCameraMatrix2D, stereoCalibrate, undistort</dd>
</dl>
</li>
</ul>
<a name="calibrateHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateHandEye</h4>
<pre>public static&nbsp;void&nbsp;calibrateHandEye(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_target2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_target2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_cam2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_cam2gripper)</pre>
<div class="block">Computes Hand-Eye calibration: \(_{}^{g}\textrm{T}_c\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>R_gripper2base</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\(_{}^{b}\textrm{T}_g\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from gripper frame to robot base frame.</dd>
<dd><code>t_gripper2base</code> - Translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\(_{}^{b}\textrm{T}_g\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from gripper frame to robot base frame.</dd>
<dd><code>R_target2cam</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\(_{}^{c}\textrm{T}_t\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from calibration target frame to camera frame.</dd>
<dd><code>t_target2cam</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\(_{}^{c}\textrm{T}_t\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from calibration target frame to camera frame.</dd>
<dd><code>R_cam2gripper</code> - Estimated <code>(3x3)</code> rotation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\(_{}^{g}\textrm{T}_c\)).</dd>
<dd><code>t_cam2gripper</code> - Estimated <code>(3x1)</code> translation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\(_{}^{g}\textrm{T}_c\)).
The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions) and the following methods are implemented:
<ul>
<li>
R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
</li>
<li>
F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
</li>
<li>
R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
</li>
</ul>
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented methods:
<ul>
<li>
N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
</li>
<li>
K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
</li>
</ul>
The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
the suitable transformations to the function, see below.
![](pics/hand-eye_figure.png)
The calibration procedure is the following:
<ul>
<li>
a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame
</li>
<li>
the robot gripper is moved in order to acquire several poses
</li>
<li>
for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\(
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{b}\textrm{R}_g &amp; _{}^{b}\textrm{t}_g \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\)
</li>
<li>
for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\(
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{c}\textrm{R}_t &amp; _{}^{c}\textrm{t}_t \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_t\\
Y_t\\
Z_t\\
1
\end{bmatrix}
\)
</li>
</ul>
The Hand-Eye calibration procedure returns the following homogeneous transformation
\(
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{g}\textrm{R}_c &amp; _{}^{g}\textrm{t}_c \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
\)
This problem is also known as solving the \(\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\) equation:
<ul>
<li>
for an eye-in-hand configuration
\(
\begin{align*}
^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &amp;=
\hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
</li>
</ul>
(^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &amp;=
\hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &amp;= \textrm{X} \textrm{B}_i \\
\end{align*}
\)
<ul>
<li>
for an eye-to-hand configuration
\(
\begin{align*}
^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &amp;=
\hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
</li>
</ul>
(^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &amp;=
\hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &amp;= \textrm{X} \textrm{B}_i \\
\end{align*}
\)
\note
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
\note
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
So at least 3 different poses are required, but it is strongly recommended to use many more poses.</dd>
</dl>
</li>
</ul>
<a name="calibrateHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateHandEye</h4>
<pre>public static&nbsp;void&nbsp;calibrateHandEye(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_gripper2base,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_target2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_target2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_cam2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_cam2gripper,
int&nbsp;method)</pre>
<div class="block">Computes Hand-Eye calibration: \(_{}^{g}\textrm{T}_c\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>R_gripper2base</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\(_{}^{b}\textrm{T}_g\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from gripper frame to robot base frame.</dd>
<dd><code>t_gripper2base</code> - Translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the robot base frame (\(_{}^{b}\textrm{T}_g\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from gripper frame to robot base frame.</dd>
<dd><code>R_target2cam</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\(_{}^{c}\textrm{T}_t\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from calibration target frame to camera frame.</dd>
<dd><code>t_target2cam</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the target frame to the camera frame (\(_{}^{c}\textrm{T}_t\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from calibration target frame to camera frame.</dd>
<dd><code>R_cam2gripper</code> - Estimated <code>(3x3)</code> rotation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\(_{}^{g}\textrm{T}_c\)).</dd>
<dd><code>t_cam2gripper</code> - Estimated <code>(3x1)</code> translation part extracted from the homogeneous matrix that transforms a point
expressed in the camera frame to the gripper frame (\(_{}^{g}\textrm{T}_c\)).</dd>
<dd><code>method</code> - One of the implemented Hand-Eye calibration method, see cv::HandEyeCalibrationMethod
The function performs the Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions) and the following methods are implemented:
<ul>
<li>
R. Tsai, R. Lenz A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/EyeCalibration \cite Tsai89
</li>
<li>
F. Park, B. Martin Robot Sensor Calibration: Solving AX = XB on the Euclidean Group \cite Park94
</li>
<li>
R. Horaud, F. Dornaika Hand-Eye Calibration \cite Horaud95
</li>
</ul>
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented methods:
<ul>
<li>
N. Andreff, R. Horaud, B. Espiau On-line Hand-Eye Calibration \cite Andreff99
</li>
<li>
K. Daniilidis Hand-Eye Calibration Using Dual Quaternions \cite Daniilidis98
</li>
</ul>
The following picture describes the Hand-Eye calibration problem where the transformation between a camera ("eye")
mounted on a robot gripper ("hand") has to be estimated. This configuration is called eye-in-hand.
The eye-to-hand configuration consists in a static camera observing a calibration pattern mounted on the robot
end-effector. The transformation from the camera to the robot base frame can then be estimated by inputting
the suitable transformations to the function, see below.
![](pics/hand-eye_figure.png)
The calibration procedure is the following:
<ul>
<li>
a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame
</li>
<li>
the robot gripper is moved in order to acquire several poses
</li>
<li>
for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\(
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{b}\textrm{R}_g &amp; _{}^{b}\textrm{t}_g \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\)
</li>
<li>
for each pose, the homogeneous transformation between the calibration target frame and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\(
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{c}\textrm{R}_t &amp; _{}^{c}\textrm{t}_t \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_t\\
Y_t\\
Z_t\\
1
\end{bmatrix}
\)
</li>
</ul>
The Hand-Eye calibration procedure returns the following homogeneous transformation
\(
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{g}\textrm{R}_c &amp; _{}^{g}\textrm{t}_c \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
\)
This problem is also known as solving the \(\mathbf{A}\mathbf{X}=\mathbf{X}\mathbf{B}\) equation:
<ul>
<li>
for an eye-in-hand configuration
\(
\begin{align*}
^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &amp;=
\hspace{0.1em} ^{b}{\textrm{T}_g}^{(2)} \hspace{0.2em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
</li>
</ul>
(^{b}{\textrm{T}_g}^{(2)})^{-1} \hspace{0.2em} ^{b}{\textrm{T}_g}^{(1)} \hspace{0.2em} ^{g}\textrm{T}_c &amp;=
\hspace{0.1em} ^{g}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &amp;= \textrm{X} \textrm{B}_i \\
\end{align*}
\)
<ul>
<li>
for an eye-to-hand configuration
\(
\begin{align*}
^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(1)} &amp;=
\hspace{0.1em} ^{g}{\textrm{T}_b}^{(2)} \hspace{0.2em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} \\
</li>
</ul>
(^{g}{\textrm{T}_b}^{(2)})^{-1} \hspace{0.2em} ^{g}{\textrm{T}_b}^{(1)} \hspace{0.2em} ^{b}\textrm{T}_c &amp;=
\hspace{0.1em} ^{b}\textrm{T}_c \hspace{0.2em} ^{c}{\textrm{T}_t}^{(2)} (^{c}{\textrm{T}_t}^{(1)})^{-1} \\
\textrm{A}_i \textrm{X} &amp;= \textrm{X} \textrm{B}_i \\
\end{align*}
\)
\note
Additional information can be found on this [website](http://campar.in.tum.de/Chair/HandEyeCalibration).
\note
A minimum of 2 motions with non parallel rotation axes are necessary to determine the hand-eye transformation.
So at least 3 different poses are required, but it is strongly recommended to use many more poses.</dd>
</dl>
</li>
</ul>
<a name="calibrateRobotWorldHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateRobotWorldHandEye</h4>
<pre>public static&nbsp;void&nbsp;calibrateRobotWorldHandEye(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_base2gripper,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_base2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_gripper2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_gripper2cam)</pre>
<div class="block">Computes Robot-World/Hand-Eye calibration: \(_{}^{w}\textrm{T}_b\) and \(_{}^{c}\textrm{T}_g\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>R_world2cam</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\(_{}^{c}\textrm{T}_w\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from world frame to the camera frame.</dd>
<dd><code>t_world2cam</code> - Translation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\(_{}^{c}\textrm{T}_w\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from world frame to the camera frame.</dd>
<dd><code>R_base2gripper</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\(_{}^{g}\textrm{T}_b\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from robot base frame to the gripper frame.</dd>
<dd><code>t_base2gripper</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\(_{}^{g}\textrm{T}_b\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from robot base frame to the gripper frame.</dd>
<dd><code>R_base2world</code> - Estimated <code>(3x3)</code> rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\(_{}^{w}\textrm{T}_b\)).</dd>
<dd><code>t_base2world</code> - Estimated <code>(3x1)</code> translation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\(_{}^{w}\textrm{T}_b\)).</dd>
<dd><code>R_gripper2cam</code> - Estimated <code>(3x3)</code> rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\(_{}^{c}\textrm{T}_g\)).</dd>
<dd><code>t_gripper2cam</code> - Estimated <code>(3x1)</code> translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\(_{}^{c}\textrm{T}_g\)).
The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions):
<ul>
<li>
M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
</li>
</ul>
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented method:
<ul>
<li>
A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
</li>
</ul>
The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
![](pics/robot-world_hand-eye_figure.png)
The calibration procedure is the following:
<ul>
<li>
a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame
</li>
<li>
the robot gripper is moved in order to acquire several poses
</li>
<li>
for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\(
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{g}\textrm{R}_b &amp; _{}^{g}\textrm{t}_b \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\)
</li>
<li>
for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\(
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{c}\textrm{R}_w &amp; _{}^{c}\textrm{t}_w \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
\)
</li>
</ul>
The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
\(
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{w}\textrm{R}_b &amp; _{}^{w}\textrm{t}_b \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\)
\(
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{c}\textrm{R}_g &amp; _{}^{c}\textrm{t}_g \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\)
This problem is also known as solving the \(\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\) equation, with:
<ul>
<li>
\(\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\)
</li>
<li>
\(\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\)
</li>
<li>
\(\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\)
</li>
<li>
\(\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\)
</li>
</ul>
\note
At least 3 measurements are required (input vectors size must be greater or equal to 3).</dd>
</dl>
</li>
</ul>
<a name="calibrateRobotWorldHandEye-java.util.List-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrateRobotWorldHandEye</h4>
<pre>public static&nbsp;void&nbsp;calibrateRobotWorldHandEye(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_world2cam,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;R_base2gripper,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;t_base2gripper,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_base2world,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R_gripper2cam,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t_gripper2cam,
int&nbsp;method)</pre>
<div class="block">Computes Robot-World/Hand-Eye calibration: \(_{}^{w}\textrm{T}_b\) and \(_{}^{c}\textrm{T}_g\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>R_world2cam</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\(_{}^{c}\textrm{T}_w\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from world frame to the camera frame.</dd>
<dd><code>t_world2cam</code> - Translation part extracted from the homogeneous matrix that transforms a point
expressed in the world frame to the camera frame (\(_{}^{c}\textrm{T}_w\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from world frame to the camera frame.</dd>
<dd><code>R_base2gripper</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\(_{}^{g}\textrm{T}_b\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the rotation, <code>(3x3)</code> rotation matrices or <code>(3x1)</code> rotation vectors,
for all the transformations from robot base frame to the gripper frame.</dd>
<dd><code>t_base2gripper</code> - Rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the gripper frame (\(_{}^{g}\textrm{T}_b\)).
This is a vector (<code>vector&amp;lt;Mat&amp;gt;</code>) that contains the <code>(3x1)</code> translation vectors for all the transformations
from robot base frame to the gripper frame.</dd>
<dd><code>R_base2world</code> - Estimated <code>(3x3)</code> rotation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\(_{}^{w}\textrm{T}_b\)).</dd>
<dd><code>t_base2world</code> - Estimated <code>(3x1)</code> translation part extracted from the homogeneous matrix that transforms a point
expressed in the robot base frame to the world frame (\(_{}^{w}\textrm{T}_b\)).</dd>
<dd><code>R_gripper2cam</code> - Estimated <code>(3x3)</code> rotation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\(_{}^{c}\textrm{T}_g\)).</dd>
<dd><code>t_gripper2cam</code> - Estimated <code>(3x1)</code> translation part extracted from the homogeneous matrix that transforms a point
expressed in the gripper frame to the camera frame (\(_{}^{c}\textrm{T}_g\)).</dd>
<dd><code>method</code> - One of the implemented Robot-World/Hand-Eye calibration method, see cv::RobotWorldHandEyeCalibrationMethod
The function performs the Robot-World/Hand-Eye calibration using various methods. One approach consists in estimating the
rotation then the translation (separable solutions):
<ul>
<li>
M. Shah, Solving the robot-world/hand-eye calibration problem using the kronecker product \cite Shah2013SolvingTR
</li>
</ul>
Another approach consists in estimating simultaneously the rotation and the translation (simultaneous solutions),
with the following implemented method:
<ul>
<li>
A. Li, L. Wang, and D. Wu, Simultaneous robot-world and hand-eye calibration using dual-quaternions and kronecker product \cite Li2010SimultaneousRA
</li>
</ul>
The following picture describes the Robot-World/Hand-Eye calibration problem where the transformations between a robot and a world frame
and between a robot gripper ("hand") and a camera ("eye") mounted at the robot end-effector have to be estimated.
![](pics/robot-world_hand-eye_figure.png)
The calibration procedure is the following:
<ul>
<li>
a static calibration pattern is used to estimate the transformation between the target frame
and the camera frame
</li>
<li>
the robot gripper is moved in order to acquire several poses
</li>
<li>
for each pose, the homogeneous transformation between the gripper frame and the robot base frame is recorded using for
instance the robot kinematics
\(
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{g}\textrm{R}_b &amp; _{}^{g}\textrm{t}_b \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\)
</li>
<li>
for each pose, the homogeneous transformation between the calibration target frame (the world frame) and the camera frame is recorded using
for instance a pose estimation method (PnP) from 2D-3D point correspondences
\(
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{c}\textrm{R}_w &amp; _{}^{c}\textrm{t}_w \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
\)
</li>
</ul>
The Robot-World/Hand-Eye calibration procedure returns the following homogeneous transformations
\(
\begin{bmatrix}
X_w\\
Y_w\\
Z_w\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{w}\textrm{R}_b &amp; _{}^{w}\textrm{t}_b \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_b\\
Y_b\\
Z_b\\
1
\end{bmatrix}
\)
\(
\begin{bmatrix}
X_c\\
Y_c\\
Z_c\\
1
\end{bmatrix}
=
\begin{bmatrix}
_{}^{c}\textrm{R}_g &amp; _{}^{c}\textrm{t}_g \\
0_{1 \times 3} &amp; 1
\end{bmatrix}
\begin{bmatrix}
X_g\\
Y_g\\
Z_g\\
1
\end{bmatrix}
\)
This problem is also known as solving the \(\mathbf{A}\mathbf{X}=\mathbf{Z}\mathbf{B}\) equation, with:
<ul>
<li>
\(\mathbf{A} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_w\)
</li>
<li>
\(\mathbf{X} \Leftrightarrow \hspace{0.1em} _{}^{w}\textrm{T}_b\)
</li>
<li>
\(\mathbf{Z} \Leftrightarrow \hspace{0.1em} _{}^{c}\textrm{T}_g\)
</li>
<li>
\(\mathbf{B} \Leftrightarrow \hspace{0.1em} _{}^{g}\textrm{T}_b\)
</li>
</ul>
\note
At least 3 measurements are required (input vectors size must be greater or equal to 3).</dd>
</dl>
</li>
</ul>
<a name="calibrationMatrixValues-org.opencv.core.Mat-org.opencv.core.Size-double-double-double:A-double:A-double:A-org.opencv.core.Point-double:A-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>calibrationMatrixValues</h4>
<pre>public static&nbsp;void&nbsp;calibrationMatrixValues(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;apertureWidth,
double&nbsp;apertureHeight,
double[]&nbsp;fovx,
double[]&nbsp;fovy,
double[]&nbsp;focalLength,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;principalPoint,
double[]&nbsp;aspectRatio)</pre>
<div class="block">Computes useful camera characteristics from the camera intrinsic matrix.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix that can be estimated by #calibrateCamera or
#stereoCalibrate .</dd>
<dd><code>imageSize</code> - Input image size in pixels.</dd>
<dd><code>apertureWidth</code> - Physical width in mm of the sensor.</dd>
<dd><code>apertureHeight</code> - Physical height in mm of the sensor.</dd>
<dd><code>fovx</code> - Output field of view in degrees along the horizontal sensor axis.</dd>
<dd><code>fovy</code> - Output field of view in degrees along the vertical sensor axis.</dd>
<dd><code>focalLength</code> - Focal length of the lens in mm.</dd>
<dd><code>principalPoint</code> - Principal point in mm.</dd>
<dd><code>aspectRatio</code> - \(f_y/f_x\)
The function computes various useful camera characteristics from the previously estimated camera
matrix.
<b>Note:</b>
Do keep in mind that the unity measure 'mm' stands for whatever unit of measure one chooses for
the chessboard pitch (it can thus be any value).</dd>
</dl>
</li>
</ul>
<a name="checkChessboard-org.opencv.core.Mat-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>checkChessboard</h4>
<pre>public static&nbsp;boolean&nbsp;checkChessboard(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size)</pre>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1</dd>
<dd><code>dr3dt1</code> - Optional output derivative of rvec3 with regard to tvec1
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1</dd>
<dd><code>dr3dt1</code> - Optional output derivative of rvec3 with regard to tvec1</dd>
<dd><code>dr3dr2</code> - Optional output derivative of rvec3 with regard to rvec2
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1</dd>
<dd><code>dr3dt1</code> - Optional output derivative of rvec3 with regard to tvec1</dd>
<dd><code>dr3dr2</code> - Optional output derivative of rvec3 with regard to rvec2</dd>
<dd><code>dr3dt2</code> - Optional output derivative of rvec3 with regard to tvec2
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1</dd>
<dd><code>dr3dt1</code> - Optional output derivative of rvec3 with regard to tvec1</dd>
<dd><code>dr3dr2</code> - Optional output derivative of rvec3 with regard to rvec2</dd>
<dd><code>dr3dt2</code> - Optional output derivative of rvec3 with regard to tvec2</dd>
<dd><code>dt3dr1</code> - Optional output derivative of tvec3 with regard to rvec1
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt1)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1</dd>
<dd><code>dr3dt1</code> - Optional output derivative of rvec3 with regard to tvec1</dd>
<dd><code>dr3dr2</code> - Optional output derivative of rvec3 with regard to rvec2</dd>
<dd><code>dr3dt2</code> - Optional output derivative of rvec3 with regard to tvec2</dd>
<dd><code>dt3dr1</code> - Optional output derivative of tvec3 with regard to rvec1</dd>
<dd><code>dt3dt1</code> - Optional output derivative of tvec3 with regard to tvec1
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr2)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1</dd>
<dd><code>dr3dt1</code> - Optional output derivative of rvec3 with regard to tvec1</dd>
<dd><code>dr3dr2</code> - Optional output derivative of rvec3 with regard to rvec2</dd>
<dd><code>dr3dt2</code> - Optional output derivative of rvec3 with regard to tvec2</dd>
<dd><code>dt3dr1</code> - Optional output derivative of tvec3 with regard to rvec1</dd>
<dd><code>dt3dt1</code> - Optional output derivative of tvec3 with regard to tvec1</dd>
<dd><code>dt3dr2</code> - Optional output derivative of tvec3 with regard to rvec2
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="composeRT-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>composeRT</h4>
<pre>public static&nbsp;void&nbsp;composeRT(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dr3dt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dt3dt2)</pre>
<div class="block">Combines two rotation-and-shift transformations.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rvec1</code> - First rotation vector.</dd>
<dd><code>tvec1</code> - First translation vector.</dd>
<dd><code>rvec2</code> - Second rotation vector.</dd>
<dd><code>tvec2</code> - Second translation vector.</dd>
<dd><code>rvec3</code> - Output rotation vector of the superposition.</dd>
<dd><code>tvec3</code> - Output translation vector of the superposition.</dd>
<dd><code>dr3dr1</code> - Optional output derivative of rvec3 with regard to rvec1</dd>
<dd><code>dr3dt1</code> - Optional output derivative of rvec3 with regard to tvec1</dd>
<dd><code>dr3dr2</code> - Optional output derivative of rvec3 with regard to rvec2</dd>
<dd><code>dr3dt2</code> - Optional output derivative of rvec3 with regard to tvec2</dd>
<dd><code>dt3dr1</code> - Optional output derivative of tvec3 with regard to rvec1</dd>
<dd><code>dt3dt1</code> - Optional output derivative of tvec3 with regard to tvec1</dd>
<dd><code>dt3dr2</code> - Optional output derivative of tvec3 with regard to rvec2</dd>
<dd><code>dt3dt2</code> - Optional output derivative of tvec3 with regard to tvec2
The functions compute:
\(\begin{array}{l} \texttt{rvec3} = \mathrm{rodrigues} ^{-1} \left ( \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \mathrm{rodrigues} ( \texttt{rvec1} ) \right ) \\ \texttt{tvec3} = \mathrm{rodrigues} ( \texttt{rvec2} ) \cdot \texttt{tvec1} + \texttt{tvec2} \end{array} ,\)
where \(\mathrm{rodrigues}\) denotes a rotation vector to a rotation matrix transformation, and
\(\mathrm{rodrigues}^{-1}\) denotes the inverse transformation. See Rodrigues for details.
Also, the functions can compute the derivatives of the output vectors with regards to the input
vectors (see matMulDeriv ). The functions are used inside #stereoCalibrate but can also be used in
your own code where Levenberg-Marquardt or another gradient-based solver is used to optimize a
function that contains a matrix multiplication.</dd>
</dl>
</li>
</ul>
<a name="computeCorrespondEpilines-org.opencv.core.Mat-int-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>computeCorrespondEpilines</h4>
<pre>public static&nbsp;void&nbsp;computeCorrespondEpilines(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points,
int&nbsp;whichImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;lines)</pre>
<div class="block">For points in an image of a stereo pair, computes the corresponding epilines in the other image.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points</code> - Input points. \(N \times 1\) or \(1 \times N\) matrix of type CV_32FC2 or
vector&lt;Point2f&gt; .</dd>
<dd><code>whichImage</code> - Index of the image (1 or 2) that contains the points .</dd>
<dd><code>F</code> - Fundamental matrix that can be estimated using #findFundamentalMat or #stereoRectify .</dd>
<dd><code>lines</code> - Output vector of the epipolar lines corresponding to the points in the other image.
Each line \(ax + by + c=0\) is encoded by 3 numbers \((a, b, c)\) .
For every point in one of the two images of a stereo pair, the function finds the equation of the
corresponding epipolar line in the other image.
From the fundamental matrix definition (see #findFundamentalMat ), line \(l^{(2)}_i\) in the second
image for the point \(p^{(1)}_i\) in the first image (when whichImage=1 ) is computed as:
\(l^{(2)}_i = F p^{(1)}_i\)
And vice versa, when whichImage=2, \(l^{(1)}_i\) is computed from \(p^{(2)}_i\) as:
\(l^{(1)}_i = F^T p^{(2)}_i\)
Line coefficients are defined up to a scale. They are normalized so that \(a_i^2+b_i^2=1\) .</dd>
</dl>
</li>
</ul>
<a name="convertPointsFromHomogeneous-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>convertPointsFromHomogeneous</h4>
<pre>public static&nbsp;void&nbsp;convertPointsFromHomogeneous(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</pre>
<div class="block">Converts points from homogeneous to Euclidean space.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Input vector of N-dimensional points.</dd>
<dd><code>dst</code> - Output vector of N-1-dimensional points.
The function converts points homogeneous to Euclidean space using perspective projection. That is,
each point (x1, x2, ... x(n-1), xn) is converted to (x1/xn, x2/xn, ..., x(n-1)/xn). When xn=0, the
output point coordinates will be (0,0,0,...).</dd>
</dl>
</li>
</ul>
<a name="convertPointsToHomogeneous-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>convertPointsToHomogeneous</h4>
<pre>public static&nbsp;void&nbsp;convertPointsToHomogeneous(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</pre>
<div class="block">Converts points from Euclidean to homogeneous space.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Input vector of N-dimensional points.</dd>
<dd><code>dst</code> - Output vector of N+1-dimensional points.
The function converts points from Euclidean to homogeneous space by appending 1's to the tuple of
point coordinates. That is, each point (x1, x2, ..., xn) is converted to (x1, x2, ..., xn, 1).</dd>
</dl>
</li>
</ul>
<a name="correctMatches-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>correctMatches</h4>
<pre>public static&nbsp;void&nbsp;correctMatches(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newPoints1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newPoints2)</pre>
<div class="block">Refines coordinates of corresponding points.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>F</code> - 3x3 fundamental matrix.</dd>
<dd><code>points1</code> - 1xN array containing the first set of points.</dd>
<dd><code>points2</code> - 1xN array containing the second set of points.</dd>
<dd><code>newPoints1</code> - The optimized points1.</dd>
<dd><code>newPoints2</code> - The optimized points2.
The function implements the Optimal Triangulation Method (see Multiple View Geometry for details).
For each given point correspondence points1[i] &lt;-&gt; points2[i], and a fundamental matrix F, it
computes the corrected correspondences newPoints1[i] &lt;-&gt; newPoints2[i] that minimize the geometric
error \(d(points1[i], newPoints1[i])^2 + d(points2[i],newPoints2[i])^2\) (where \(d(a,b)\) is the
geometric distance between points \(a\) and \(b\) ) subject to the epipolar constraint
\(newPoints2^T * F * newPoints1 = 0\) .</dd>
</dl>
</li>
</ul>
<a name="decomposeEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>decomposeEssentialMat</h4>
<pre>public static&nbsp;void&nbsp;decomposeEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</pre>
<div class="block">Decompose an essential matrix to possible rotations and translation.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>R1</code> - One possible rotation matrix.</dd>
<dd><code>R2</code> - Another possible rotation matrix.</dd>
<dd><code>t</code> - One possible translation.
This function decomposes the essential matrix E using svd decomposition CITE: HartleyZ00. In
general, four possible poses exist for the decomposition of E. They are \([R_1, t]\),
\([R_1, -t]\), \([R_2, t]\), \([R_2, -t]\).
If E gives the epipolar constraint \([p_2; 1]^T A^{-T} E A^{-1} [p_1; 1] = 0\) between the image
points \(p_1\) in the first image and \(p_2\) in second image, then any of the tuples
\([R_1, t]\), \([R_1, -t]\), \([R_2, t]\), \([R_2, -t]\) is a change of basis from the first
camera's coordinate system to the second camera's coordinate system. However, by decomposing E, one
can only get the direction of the translation. For this reason, the translation t is returned with
unit length.</dd>
</dl>
</li>
</ul>
<a name="decomposeHomographyMat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-java.util.List-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>decomposeHomographyMat</h4>
<pre>public static&nbsp;int&nbsp;decomposeHomographyMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rotations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;translations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;normals)</pre>
<div class="block">Decompose a homography matrix to rotation(s), translation(s) and plane normal(s).</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>H</code> - The input homography matrix between two images.</dd>
<dd><code>K</code> - The input camera intrinsic matrix.</dd>
<dd><code>rotations</code> - Array of rotation matrices.</dd>
<dd><code>translations</code> - Array of translation matrices.</dd>
<dd><code>normals</code> - Array of plane normal matrices.
This function extracts relative camera motion between two views of a planar object and returns up to
four mathematical solution tuples of rotation, translation, and plane normal. The decomposition of
the homography matrix H is described in detail in CITE: Malis.
If the homography H, induced by the plane, gives the constraint
\(s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\) on the source image points
\(p_i\) and the destination image points \(p'_i\), then the tuple of rotations[k] and
translations[k] is a change of basis from the source camera's coordinate system to the destination
camera's coordinate system. However, by decomposing H, one can only get the translation normalized
by the (typically unknown) depth of the scene, i.e. its direction but with normalized length.
If point correspondences are available, at least two solutions may further be invalidated, by
applying positive depth constraint, i.e. all points must be in front of the camera.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>decomposeProjectionMatrix</h4>
<pre>public static&nbsp;void&nbsp;decomposeProjectionMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect)</pre>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>projMatrix</code> - 3x4 input projection matrix P.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 camera intrinsic matrix \(\cameramatrix{A}\).</dd>
<dd><code>rotMatrix</code> - Output 3x3 external rotation matrix R.</dd>
<dd><code>transVect</code> - Output 4x1 translation vector T.
degrees.
The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see CITE: Slabaugh . Returned
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on RQDecomp3x3 .</dd>
</dl>
</li>
</ul>
<a name="decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>decomposeProjectionMatrix</h4>
<pre>public static&nbsp;void&nbsp;decomposeProjectionMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX)</pre>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>projMatrix</code> - 3x4 input projection matrix P.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 camera intrinsic matrix \(\cameramatrix{A}\).</dd>
<dd><code>rotMatrix</code> - Output 3x3 external rotation matrix R.</dd>
<dd><code>transVect</code> - Output 4x1 translation vector T.</dd>
<dd><code>rotMatrixX</code> - Optional 3x3 rotation matrix around x-axis.
degrees.
The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see CITE: Slabaugh . Returned
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on RQDecomp3x3 .</dd>
</dl>
</li>
</ul>
<a name="decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>decomposeProjectionMatrix</h4>
<pre>public static&nbsp;void&nbsp;decomposeProjectionMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixY)</pre>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>projMatrix</code> - 3x4 input projection matrix P.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 camera intrinsic matrix \(\cameramatrix{A}\).</dd>
<dd><code>rotMatrix</code> - Output 3x3 external rotation matrix R.</dd>
<dd><code>transVect</code> - Output 4x1 translation vector T.</dd>
<dd><code>rotMatrixX</code> - Optional 3x3 rotation matrix around x-axis.</dd>
<dd><code>rotMatrixY</code> - Optional 3x3 rotation matrix around y-axis.
degrees.
The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see CITE: Slabaugh . Returned
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on RQDecomp3x3 .</dd>
</dl>
</li>
</ul>
<a name="decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>decomposeProjectionMatrix</h4>
<pre>public static&nbsp;void&nbsp;decomposeProjectionMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixY,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixZ)</pre>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>projMatrix</code> - 3x4 input projection matrix P.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 camera intrinsic matrix \(\cameramatrix{A}\).</dd>
<dd><code>rotMatrix</code> - Output 3x3 external rotation matrix R.</dd>
<dd><code>transVect</code> - Output 4x1 translation vector T.</dd>
<dd><code>rotMatrixX</code> - Optional 3x3 rotation matrix around x-axis.</dd>
<dd><code>rotMatrixY</code> - Optional 3x3 rotation matrix around y-axis.</dd>
<dd><code>rotMatrixZ</code> - Optional 3x3 rotation matrix around z-axis.
degrees.
The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see CITE: Slabaugh . Returned
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on RQDecomp3x3 .</dd>
</dl>
</li>
</ul>
<a name="decomposeProjectionMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>decomposeProjectionMatrix</h4>
<pre>public static&nbsp;void&nbsp;decomposeProjectionMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;transVect,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixX,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixY,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rotMatrixZ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;eulerAngles)</pre>
<div class="block">Decomposes a projection matrix into a rotation matrix and a camera intrinsic matrix.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>projMatrix</code> - 3x4 input projection matrix P.</dd>
<dd><code>cameraMatrix</code> - Output 3x3 camera intrinsic matrix \(\cameramatrix{A}\).</dd>
<dd><code>rotMatrix</code> - Output 3x3 external rotation matrix R.</dd>
<dd><code>transVect</code> - Output 4x1 translation vector T.</dd>
<dd><code>rotMatrixX</code> - Optional 3x3 rotation matrix around x-axis.</dd>
<dd><code>rotMatrixY</code> - Optional 3x3 rotation matrix around y-axis.</dd>
<dd><code>rotMatrixZ</code> - Optional 3x3 rotation matrix around z-axis.</dd>
<dd><code>eulerAngles</code> - Optional three-element vector containing three Euler angles of rotation in
degrees.
The function computes a decomposition of a projection matrix into a calibration and a rotation
matrix and the position of a camera.
It optionally returns three rotation matrices, one for each axis, and three Euler angles that could
be used in OpenGL. Note, there is always more than one sequence of rotations about the three
principal axes that results in the same orientation of an object, e.g. see CITE: Slabaugh . Returned
tree rotation matrices and corresponding three Euler angles are only one of the possible solutions.
The function is based on RQDecomp3x3 .</dd>
</dl>
</li>
</ul>
<a name="drawChessboardCorners-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.MatOfPoint2f-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>drawChessboardCorners</h4>
<pre>public static&nbsp;void&nbsp;drawChessboardCorners(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;corners,
boolean&nbsp;patternWasFound)</pre>
<div class="block">Renders the detected chessboard corners.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Destination image. It must be an 8-bit color image.</dd>
<dd><code>patternSize</code> - Number of inner corners per a chessboard row and column
(patternSize = cv::Size(points_per_row,points_per_column)).</dd>
<dd><code>corners</code> - Array of detected corners, the output of #findChessboardCorners.</dd>
<dd><code>patternWasFound</code> - Parameter indicating whether the complete board was found or not. The
return value of #findChessboardCorners should be passed here.
The function draws individual chessboard corners detected either as red circles if the board was not
found, or as colored corners connected with lines if the board was found.</dd>
</dl>
</li>
</ul>
<a name="drawFrameAxes-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-float-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>drawFrameAxes</h4>
<pre>public static&nbsp;void&nbsp;drawFrameAxes(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
float&nbsp;length)</pre>
<div class="block">Draw axes of the world/object coordinate system from pose estimation. SEE: solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Input/output image. It must have 1 or 3 channels. The number of channels is not altered.</dd>
<dd><code>cameraMatrix</code> - Input 3x3 floating-point matrix of camera intrinsic parameters.
\(\cameramatrix{A}\)</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is empty, the zero distortion coefficients are assumed.</dd>
<dd><code>rvec</code> - Rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Translation vector.</dd>
<dd><code>length</code> - Length of the painted axes in the same unit than tvec (usually in meters).
This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
OX is drawn in red, OY in green and OZ in blue.</dd>
</dl>
</li>
</ul>
<a name="drawFrameAxes-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-float-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>drawFrameAxes</h4>
<pre>public static&nbsp;void&nbsp;drawFrameAxes(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
float&nbsp;length,
int&nbsp;thickness)</pre>
<div class="block">Draw axes of the world/object coordinate system from pose estimation. SEE: solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Input/output image. It must have 1 or 3 channels. The number of channels is not altered.</dd>
<dd><code>cameraMatrix</code> - Input 3x3 floating-point matrix of camera intrinsic parameters.
\(\cameramatrix{A}\)</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is empty, the zero distortion coefficients are assumed.</dd>
<dd><code>rvec</code> - Rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Translation vector.</dd>
<dd><code>length</code> - Length of the painted axes in the same unit than tvec (usually in meters).</dd>
<dd><code>thickness</code> - Line thickness of the painted axes.
This function draws the axes of the world/object coordinate system w.r.t. to the camera frame.
OX is drawn in red, OY in green and OZ in blue.</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to)</pre>
<div class="block">Computes an optimal affine transformation between two 2D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12}\\
a_{21} &amp; a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set containing \((X,Y)\).</dd>
<dd><code>to</code> - Second input 2D point set containing \((x,y)\).
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; b_1\\
a_{21} &amp; a_{22} &amp; b_2\\
\end{bmatrix}
\)
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffinePartial2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</pre>
<div class="block">Computes an optimal affine transformation between two 2D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12}\\
a_{21} &amp; a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set containing \((X,Y)\).</dd>
<dd><code>to</code> - Second input 2D point set containing \((x,y)\).</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; b_1\\
a_{21} &amp; a_{22} &amp; b_2\\
\end{bmatrix}
\)
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffinePartial2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method)</pre>
<div class="block">Computes an optimal affine transformation between two 2D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12}\\
a_{21} &amp; a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set containing \((X,Y)\).</dd>
<dd><code>to</code> - Second input 2D point set containing \((x,y)\).</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; b_1\\
a_{21} &amp; a_{22} &amp; b_2\\
\end{bmatrix}
\)
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffinePartial2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</pre>
<div class="block">Computes an optimal affine transformation between two 2D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12}\\
a_{21} &amp; a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set containing \((X,Y)\).</dd>
<dd><code>to</code> - Second input 2D point set containing \((x,y)\).</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; b_1\\
a_{21} &amp; a_{22} &amp; b_2\\
\end{bmatrix}
\)
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffinePartial2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters)</pre>
<div class="block">Computes an optimal affine transformation between two 2D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12}\\
a_{21} &amp; a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set containing \((X,Y)\).</dd>
<dd><code>to</code> - Second input 2D point set containing \((x,y)\).</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; b_1\\
a_{21} &amp; a_{22} &amp; b_2\\
\end{bmatrix}
\)
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffinePartial2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence)</pre>
<div class="block">Computes an optimal affine transformation between two 2D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12}\\
a_{21} &amp; a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set containing \((X,Y)\).</dd>
<dd><code>to</code> - Second input 2D point set containing \((x,y)\).</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.</dd>
<dd><code>confidence</code> - Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; b_1\\
a_{21} &amp; a_{22} &amp; b_2\\
\end{bmatrix}
\)
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffinePartial2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-long-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence,
long&nbsp;refineIters)</pre>
<div class="block">Computes an optimal affine transformation between two 2D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12}\\
a_{21} &amp; a_{22}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set containing \((X,Y)\).</dd>
<dd><code>to</code> - Second input 2D point set containing \((x,y)\).</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.</dd>
<dd><code>confidence</code> - Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.</dd>
<dd><code>refineIters</code> - Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation matrix \(2 \times 3\) or empty matrix if transformation
could not be estimated. The returned matrix has the following form:
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; b_1\\
a_{21} &amp; a_{22} &amp; b_2\\
\end{bmatrix}
\)
The function estimates an optimal 2D affine transformation between two 2D point sets using the
selected robust algorithm.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but needs a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffinePartial2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffine2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pts1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pts2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</pre>
</li>
</ul>
<a name="estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine3D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</pre>
<div class="block">Computes an optimal affine transformation between two 3D point sets.
It computes \(R,s,t\) minimizing \(\sum{i} dst_i - c \cdot R \cdot src_i \)
where \(R\) is a 3x3 rotation matrix, \(t\) is a 3x1 translation vector and \(s\) is a
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
The estimated affine transform has a homogeneous scale which is a subclass of affine
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
points each.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set.</dd>
<dd><code>dst</code> - Second input 3D point set.
Else the pointed-to variable will be set to the optimal scale.
This might be unwanted, e.g. when optimizing a transform between a right- and a
left-handed coordinate system.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>3D affine transformation matrix \(3 \times 4\) of the form
\(T =
\begin{bmatrix}
R &amp; t\\
\end{bmatrix}
\)</dd>
</dl>
</li>
</ul>
<a name="estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-double:A-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine3D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
double[]&nbsp;scale)</pre>
<div class="block">Computes an optimal affine transformation between two 3D point sets.
It computes \(R,s,t\) minimizing \(\sum{i} dst_i - c \cdot R \cdot src_i \)
where \(R\) is a 3x3 rotation matrix, \(t\) is a 3x1 translation vector and \(s\) is a
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
The estimated affine transform has a homogeneous scale which is a subclass of affine
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
points each.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set.</dd>
<dd><code>dst</code> - Second input 3D point set.</dd>
<dd><code>scale</code> - If null is passed, the scale parameter c will be assumed to be 1.0.
Else the pointed-to variable will be set to the optimal scale.
This might be unwanted, e.g. when optimizing a transform between a right- and a
left-handed coordinate system.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>3D affine transformation matrix \(3 \times 4\) of the form
\(T =
\begin{bmatrix}
R &amp; t\\
\end{bmatrix}
\)</dd>
</dl>
</li>
</ul>
<a name="estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-double:A-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine3D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffine3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
double[]&nbsp;scale,
boolean&nbsp;force_rotation)</pre>
<div class="block">Computes an optimal affine transformation between two 3D point sets.
It computes \(R,s,t\) minimizing \(\sum{i} dst_i - c \cdot R \cdot src_i \)
where \(R\) is a 3x3 rotation matrix, \(t\) is a 3x1 translation vector and \(s\) is a
scalar size value. This is an implementation of the algorithm by Umeyama \cite umeyama1991least .
The estimated affine transform has a homogeneous scale which is a subclass of affine
transformations with 7 degrees of freedom. The paired point sets need to comprise at least 3
points each.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set.</dd>
<dd><code>dst</code> - Second input 3D point set.</dd>
<dd><code>scale</code> - If null is passed, the scale parameter c will be assumed to be 1.0.
Else the pointed-to variable will be set to the optimal scale.</dd>
<dd><code>force_rotation</code> - If true, the returned rotation will never be a reflection.
This might be unwanted, e.g. when optimizing a transform between a right- and a
left-handed coordinate system.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>3D affine transformation matrix \(3 \times 4\) of the form
\(T =
\begin{bmatrix}
R &amp; t\\
\end{bmatrix}
\)</dd>
</dl>
</li>
</ul>
<a name="estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine3D</h4>
<pre>public static&nbsp;int&nbsp;estimateAffine3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</pre>
<div class="block">Computes an optimal affine transformation between two 3D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
z\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; a_{13}\\
a_{21} &amp; a_{22} &amp; a_{23}\\
a_{31} &amp; a_{32} &amp; a_{33}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
Z\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
b_3\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set containing \((X,Y,Z)\).</dd>
<dd><code>dst</code> - Second input 3D point set containing \((x,y,z)\).</dd>
<dd><code>out</code> - Output 3D affine transformation matrix \(3 \times 4\) of the form
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; a_{13} &amp; b_1\\
a_{21} &amp; a_{22} &amp; a_{23} &amp; b_2\\
a_{31} &amp; a_{32} &amp; a_{33} &amp; b_3\\
\end{bmatrix}
\)</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).
an inlier.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
The function estimates an optimal 3D affine transformation between two 3D point sets using the
RANSAC algorithm.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine3D</h4>
<pre>public static&nbsp;int&nbsp;estimateAffine3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold)</pre>
<div class="block">Computes an optimal affine transformation between two 3D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
z\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; a_{13}\\
a_{21} &amp; a_{22} &amp; a_{23}\\
a_{31} &amp; a_{32} &amp; a_{33}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
Z\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
b_3\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set containing \((X,Y,Z)\).</dd>
<dd><code>dst</code> - Second input 3D point set containing \((x,y,z)\).</dd>
<dd><code>out</code> - Output 3D affine transformation matrix \(3 \times 4\) of the form
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; a_{13} &amp; b_1\\
a_{21} &amp; a_{22} &amp; a_{23} &amp; b_2\\
a_{31} &amp; a_{32} &amp; a_{33} &amp; b_3\\
\end{bmatrix}
\)</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>ransacThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
The function estimates an optimal 3D affine transformation between two 3D point sets using the
RANSAC algorithm.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="estimateAffine3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffine3D</h4>
<pre>public static&nbsp;int&nbsp;estimateAffine3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold,
double&nbsp;confidence)</pre>
<div class="block">Computes an optimal affine transformation between two 3D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
z\\
\end{bmatrix}
=
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; a_{13}\\
a_{21} &amp; a_{22} &amp; a_{23}\\
a_{31} &amp; a_{32} &amp; a_{33}\\
\end{bmatrix}
\begin{bmatrix}
X\\
Y\\
Z\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
b_3\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set containing \((X,Y,Z)\).</dd>
<dd><code>dst</code> - Second input 3D point set containing \((x,y,z)\).</dd>
<dd><code>out</code> - Output 3D affine transformation matrix \(3 \times 4\) of the form
\(
\begin{bmatrix}
a_{11} &amp; a_{12} &amp; a_{13} &amp; b_1\\
a_{21} &amp; a_{22} &amp; a_{23} &amp; b_2\\
a_{31} &amp; a_{32} &amp; a_{33} &amp; b_3\\
\end{bmatrix}
\)</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>ransacThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.</dd>
<dd><code>confidence</code> - Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
The function estimates an optimal 3D affine transformation between two 3D point sets using the
RANSAC algorithm.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffinePartial2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffinePartial2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to)</pre>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set.</dd>
<dd><code>to</code> - Second input 2D point set.
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation (4 degrees of freedom) matrix \(2 \times 3\) or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\( \begin{bmatrix} \cos(\theta) \cdot s &amp; -\sin(\theta) \cdot s &amp; t_x \\
\sin(\theta) \cdot s &amp; \cos(\theta) \cdot s &amp; t_y
\end{bmatrix} \)
Where \( \theta \) is the rotation angle, \( s \) the scaling factor and \( t_x, t_y \) are
translations in \( x, y \) axes respectively.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffine2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffinePartial2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffinePartial2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</pre>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set.</dd>
<dd><code>to</code> - Second input 2D point set.</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers.
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation (4 degrees of freedom) matrix \(2 \times 3\) or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\( \begin{bmatrix} \cos(\theta) \cdot s &amp; -\sin(\theta) \cdot s &amp; t_x \\
\sin(\theta) \cdot s &amp; \cos(\theta) \cdot s &amp; t_y
\end{bmatrix} \)
Where \( \theta \) is the rotation angle, \( s \) the scaling factor and \( t_x, t_y \) are
translations in \( x, y \) axes respectively.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffine2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffinePartial2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffinePartial2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method)</pre>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set.</dd>
<dd><code>to</code> - Second input 2D point set.</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers.</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation (4 degrees of freedom) matrix \(2 \times 3\) or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\( \begin{bmatrix} \cos(\theta) \cdot s &amp; -\sin(\theta) \cdot s &amp; t_x \\
\sin(\theta) \cdot s &amp; \cos(\theta) \cdot s &amp; t_y
\end{bmatrix} \)
Where \( \theta \) is the rotation angle, \( s \) the scaling factor and \( t_x, t_y \) are
translations in \( x, y \) axes respectively.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffine2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffinePartial2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffinePartial2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</pre>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set.</dd>
<dd><code>to</code> - Second input 2D point set.</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers.</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation (4 degrees of freedom) matrix \(2 \times 3\) or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\( \begin{bmatrix} \cos(\theta) \cdot s &amp; -\sin(\theta) \cdot s &amp; t_x \\
\sin(\theta) \cdot s &amp; \cos(\theta) \cdot s &amp; t_y
\end{bmatrix} \)
Where \( \theta \) is the rotation angle, \( s \) the scaling factor and \( t_x, t_y \) are
translations in \( x, y \) axes respectively.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffine2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffinePartial2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffinePartial2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters)</pre>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set.</dd>
<dd><code>to</code> - Second input 2D point set.</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers.</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation (4 degrees of freedom) matrix \(2 \times 3\) or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\( \begin{bmatrix} \cos(\theta) \cdot s &amp; -\sin(\theta) \cdot s &amp; t_x \\
\sin(\theta) \cdot s &amp; \cos(\theta) \cdot s &amp; t_y
\end{bmatrix} \)
Where \( \theta \) is the rotation angle, \( s \) the scaling factor and \( t_x, t_y \) are
translations in \( x, y \) axes respectively.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffine2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffinePartial2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffinePartial2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence)</pre>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set.</dd>
<dd><code>to</code> - Second input 2D point set.</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers.</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.</dd>
<dd><code>confidence</code> - Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation (4 degrees of freedom) matrix \(2 \times 3\) or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\( \begin{bmatrix} \cos(\theta) \cdot s &amp; -\sin(\theta) \cdot s &amp; t_x \\
\sin(\theta) \cdot s &amp; \cos(\theta) \cdot s &amp; t_y
\end{bmatrix} \)
Where \( \theta \) is the rotation angle, \( s \) the scaling factor and \( t_x, t_y \) are
translations in \( x, y \) axes respectively.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffine2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateAffinePartial2D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-long-double-long-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateAffinePartial2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;estimateAffinePartial2D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;from,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;to,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
long&nbsp;maxIters,
double&nbsp;confidence,
long&nbsp;refineIters)</pre>
<div class="block">Computes an optimal limited affine transformation with 4 degrees of freedom between
two 2D point sets.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>from</code> - First input 2D point set.</dd>
<dd><code>to</code> - Second input 2D point set.</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers.</dd>
<dd><code>method</code> - Robust method used to compute transformation. The following methods are possible:
<ul>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
RANSAC is the default method.</dd>
<dd><code>ransacReprojThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider
a point as an inlier. Applies only to RANSAC.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.</dd>
<dd><code>confidence</code> - Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.</dd>
<dd><code>refineIters</code> - Maximum number of iterations of refining algorithm (Levenberg-Marquardt).
Passing 0 will disable refining, so the output matrix will be output of robust method.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Output 2D affine transformation (4 degrees of freedom) matrix \(2 \times 3\) or
empty matrix if transformation could not be estimated.
The function estimates an optimal 2D affine transformation with 4 degrees of freedom limited to
combinations of translation, rotation, and uniform scaling. Uses the selected algorithm for robust
estimation.
The computed transformation is then refined further (using only inliers) with the
Levenberg-Marquardt method to reduce the re-projection error even more.
Estimated transformation matrix is:
\( \begin{bmatrix} \cos(\theta) \cdot s &amp; -\sin(\theta) \cdot s &amp; t_x \\
\sin(\theta) \cdot s &amp; \cos(\theta) \cdot s &amp; t_y
\end{bmatrix} \)
Where \( \theta \) is the rotation angle, \( s \) the scaling factor and \( t_x, t_y \) are
translations in \( x, y \) axes respectively.
<b>Note:</b>
The RANSAC method can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers.
SEE: estimateAffine2D, getAffineTransform</dd>
</dl>
</li>
</ul>
<a name="estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateChessboardSharpness</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a>&nbsp;estimateChessboardSharpness(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners)</pre>
<div class="block">Estimates the sharpness of a detected chessboard.
Image sharpness, as well as brightness, are a critical parameter for accuracte
camera calibration. For accessing these parameters for filtering out
problematic calibraiton images, this method calculates edge profiles by traveling from
black to white chessboard cell centers. Based on this, the number of pixels is
calculated required to transit from black to white. This width of the
transition area is a good indication of how sharp the chessboard is imaged
and should be below ~3.0 pixels.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Gray image used to find chessboard corners</dd>
<dd><code>patternSize</code> - Size of a found chessboard pattern</dd>
<dd><code>corners</code> - Corners found by #findChessboardCornersSB
The optional sharpness array is of type CV_32FC1 and has for each calculated
profile one row with the following five entries:
0 = x coordinate of the underlying edge in the image
1 = y coordinate of the underlying edge in the image
2 = width of the transition area (sharpness)
3 = signal strength in the black cell (min brightness)
4 = signal strength in the white cell (max brightness)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Scalar(average sharpness, average min brightness, average max brightness,0)</dd>
</dl>
</li>
</ul>
<a name="estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-float-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateChessboardSharpness</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a>&nbsp;estimateChessboardSharpness(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
float&nbsp;rise_distance)</pre>
<div class="block">Estimates the sharpness of a detected chessboard.
Image sharpness, as well as brightness, are a critical parameter for accuracte
camera calibration. For accessing these parameters for filtering out
problematic calibraiton images, this method calculates edge profiles by traveling from
black to white chessboard cell centers. Based on this, the number of pixels is
calculated required to transit from black to white. This width of the
transition area is a good indication of how sharp the chessboard is imaged
and should be below ~3.0 pixels.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Gray image used to find chessboard corners</dd>
<dd><code>patternSize</code> - Size of a found chessboard pattern</dd>
<dd><code>corners</code> - Corners found by #findChessboardCornersSB</dd>
<dd><code>rise_distance</code> - Rise distance 0.8 means 10% ... 90% of the final signal strength
The optional sharpness array is of type CV_32FC1 and has for each calculated
profile one row with the following five entries:
0 = x coordinate of the underlying edge in the image
1 = y coordinate of the underlying edge in the image
2 = width of the transition area (sharpness)
3 = signal strength in the black cell (min brightness)
4 = signal strength in the white cell (max brightness)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Scalar(average sharpness, average min brightness, average max brightness,0)</dd>
</dl>
</li>
</ul>
<a name="estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-float-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateChessboardSharpness</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a>&nbsp;estimateChessboardSharpness(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
float&nbsp;rise_distance,
boolean&nbsp;vertical)</pre>
<div class="block">Estimates the sharpness of a detected chessboard.
Image sharpness, as well as brightness, are a critical parameter for accuracte
camera calibration. For accessing these parameters for filtering out
problematic calibraiton images, this method calculates edge profiles by traveling from
black to white chessboard cell centers. Based on this, the number of pixels is
calculated required to transit from black to white. This width of the
transition area is a good indication of how sharp the chessboard is imaged
and should be below ~3.0 pixels.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Gray image used to find chessboard corners</dd>
<dd><code>patternSize</code> - Size of a found chessboard pattern</dd>
<dd><code>corners</code> - Corners found by #findChessboardCornersSB</dd>
<dd><code>rise_distance</code> - Rise distance 0.8 means 10% ... 90% of the final signal strength</dd>
<dd><code>vertical</code> - By default edge responses for horizontal lines are calculated
The optional sharpness array is of type CV_32FC1 and has for each calculated
profile one row with the following five entries:
0 = x coordinate of the underlying edge in the image
1 = y coordinate of the underlying edge in the image
2 = width of the transition area (sharpness)
3 = signal strength in the black cell (min brightness)
4 = signal strength in the white cell (max brightness)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Scalar(average sharpness, average min brightness, average max brightness,0)</dd>
</dl>
</li>
</ul>
<a name="estimateChessboardSharpness-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-float-boolean-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateChessboardSharpness</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Scalar.html" title="class in org.opencv.core">Scalar</a>&nbsp;estimateChessboardSharpness(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
float&nbsp;rise_distance,
boolean&nbsp;vertical,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;sharpness)</pre>
<div class="block">Estimates the sharpness of a detected chessboard.
Image sharpness, as well as brightness, are a critical parameter for accuracte
camera calibration. For accessing these parameters for filtering out
problematic calibraiton images, this method calculates edge profiles by traveling from
black to white chessboard cell centers. Based on this, the number of pixels is
calculated required to transit from black to white. This width of the
transition area is a good indication of how sharp the chessboard is imaged
and should be below ~3.0 pixels.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Gray image used to find chessboard corners</dd>
<dd><code>patternSize</code> - Size of a found chessboard pattern</dd>
<dd><code>corners</code> - Corners found by #findChessboardCornersSB</dd>
<dd><code>rise_distance</code> - Rise distance 0.8 means 10% ... 90% of the final signal strength</dd>
<dd><code>vertical</code> - By default edge responses for horizontal lines are calculated</dd>
<dd><code>sharpness</code> - Optional output array with a sharpness value for calculated edge responses (see description)
The optional sharpness array is of type CV_32FC1 and has for each calculated
profile one row with the following five entries:
0 = x coordinate of the underlying edge in the image
1 = y coordinate of the underlying edge in the image
2 = width of the transition area (sharpness)
3 = signal strength in the black cell (min brightness)
4 = signal strength in the white cell (max brightness)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>Scalar(average sharpness, average min brightness, average max brightness,0)</dd>
</dl>
</li>
</ul>
<a name="estimateTranslation3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateTranslation3D</h4>
<pre>public static&nbsp;int&nbsp;estimateTranslation3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</pre>
<div class="block">Computes an optimal translation between two 3D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
z\\
\end{bmatrix}
=
\begin{bmatrix}
X\\
Y\\
Z\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
b_3\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set containing \((X,Y,Z)\).</dd>
<dd><code>dst</code> - Second input 3D point set containing \((x,y,z)\).</dd>
<dd><code>out</code> - Output 3D translation vector \(3 \times 1\) of the form
\(
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\end{bmatrix}
\)</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).
an inlier.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
The function estimates an optimal 3D translation between two 3D point sets using the
RANSAC algorithm.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="estimateTranslation3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateTranslation3D</h4>
<pre>public static&nbsp;int&nbsp;estimateTranslation3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold)</pre>
<div class="block">Computes an optimal translation between two 3D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
z\\
\end{bmatrix}
=
\begin{bmatrix}
X\\
Y\\
Z\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
b_3\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set containing \((X,Y,Z)\).</dd>
<dd><code>dst</code> - Second input 3D point set containing \((x,y,z)\).</dd>
<dd><code>out</code> - Output 3D translation vector \(3 \times 1\) of the form
\(
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\end{bmatrix}
\)</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>ransacThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
The function estimates an optimal 3D translation between two 3D point sets using the
RANSAC algorithm.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="estimateTranslation3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>estimateTranslation3D</h4>
<pre>public static&nbsp;int&nbsp;estimateTranslation3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;out,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
double&nbsp;ransacThreshold,
double&nbsp;confidence)</pre>
<div class="block">Computes an optimal translation between two 3D point sets.
It computes
\(
\begin{bmatrix}
x\\
y\\
z\\
\end{bmatrix}
=
\begin{bmatrix}
X\\
Y\\
Z\\
\end{bmatrix}
+
\begin{bmatrix}
b_1\\
b_2\\
b_3\\
\end{bmatrix}
\)</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - First input 3D point set containing \((X,Y,Z)\).</dd>
<dd><code>dst</code> - Second input 3D point set containing \((x,y,z)\).</dd>
<dd><code>out</code> - Output 3D translation vector \(3 \times 1\) of the form
\(
\begin{bmatrix}
b_1 \\
b_2 \\
b_3 \\
\end{bmatrix}
\)</dd>
<dd><code>inliers</code> - Output vector indicating which points are inliers (1-inlier, 0-outlier).</dd>
<dd><code>ransacThreshold</code> - Maximum reprojection error in the RANSAC algorithm to consider a point as
an inlier.</dd>
<dd><code>confidence</code> - Confidence level, between 0 and 1, for the estimated transformation. Anything
between 0.95 and 0.99 is usually good enough. Values too close to 1 can slow down the estimation
significantly. Values lower than 0.8-0.9 can result in an incorrectly estimated transformation.
The function estimates an optimal 3D translation between two 3D point sets using the
RANSAC algorithm.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="filterHomographyDecompByVisibleRefpoints-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>filterHomographyDecompByVisibleRefpoints</h4>
<pre>public static&nbsp;void&nbsp;filterHomographyDecompByVisibleRefpoints(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rotations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;normals,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;beforePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;afterPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;possibleSolutions)</pre>
<div class="block">Filters homography decompositions based on additional information.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rotations</code> - Vector of rotation matrices.</dd>
<dd><code>normals</code> - Vector of plane normal matrices.</dd>
<dd><code>beforePoints</code> - Vector of (rectified) visible reference points before the homography is applied</dd>
<dd><code>afterPoints</code> - Vector of (rectified) visible reference points after the homography is applied</dd>
<dd><code>possibleSolutions</code> - Vector of int indices representing the viable solution set after filtering
This function is intended to filter the output of the #decomposeHomographyMat based on additional
information as described in CITE: Malis . The summary of the method: the #decomposeHomographyMat function
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
sets of points visible in the camera frame before and after the homography transformation is applied,
we can determine which are the true potential solutions and which are the opposites by verifying which
homographies are consistent with all visible reference points being in front of the camera. The inputs
are left unchanged; the filtered solution set is returned as indices into the existing one.</dd>
</dl>
</li>
</ul>
<a name="filterHomographyDecompByVisibleRefpoints-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>filterHomographyDecompByVisibleRefpoints</h4>
<pre>public static&nbsp;void&nbsp;filterHomographyDecompByVisibleRefpoints(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rotations,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;normals,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;beforePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;afterPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;possibleSolutions,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pointsMask)</pre>
<div class="block">Filters homography decompositions based on additional information.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>rotations</code> - Vector of rotation matrices.</dd>
<dd><code>normals</code> - Vector of plane normal matrices.</dd>
<dd><code>beforePoints</code> - Vector of (rectified) visible reference points before the homography is applied</dd>
<dd><code>afterPoints</code> - Vector of (rectified) visible reference points after the homography is applied</dd>
<dd><code>possibleSolutions</code> - Vector of int indices representing the viable solution set after filtering</dd>
<dd><code>pointsMask</code> - optional Mat/Vector of 8u type representing the mask for the inliers as given by the #findHomography function
This function is intended to filter the output of the #decomposeHomographyMat based on additional
information as described in CITE: Malis . The summary of the method: the #decomposeHomographyMat function
returns 2 unique solutions and their "opposites" for a total of 4 solutions. If we have access to the
sets of points visible in the camera frame before and after the homography transformation is applied,
we can determine which are the true potential solutions and which are the opposites by verifying which
homographies are consistent with all visible reference points being in front of the camera. The inputs
are left unchanged; the filtered solution set is returned as indices into the existing one.</dd>
</dl>
</li>
</ul>
<a name="filterSpeckles-org.opencv.core.Mat-double-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>filterSpeckles</h4>
<pre>public static&nbsp;void&nbsp;filterSpeckles(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
double&nbsp;newVal,
int&nbsp;maxSpeckleSize,
double&nbsp;maxDiff)</pre>
<div class="block">Filters off small noise blobs (speckles) in the disparity map</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>img</code> - The input 16-bit signed disparity image</dd>
<dd><code>newVal</code> - The disparity value used to paint-off the speckles</dd>
<dd><code>maxSpeckleSize</code> - The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm</dd>
<dd><code>maxDiff</code> - Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.</dd>
</dl>
</li>
</ul>
<a name="filterSpeckles-org.opencv.core.Mat-double-int-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>filterSpeckles</h4>
<pre>public static&nbsp;void&nbsp;filterSpeckles(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
double&nbsp;newVal,
int&nbsp;maxSpeckleSize,
double&nbsp;maxDiff,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;buf)</pre>
<div class="block">Filters off small noise blobs (speckles) in the disparity map</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>img</code> - The input 16-bit signed disparity image</dd>
<dd><code>newVal</code> - The disparity value used to paint-off the speckles</dd>
<dd><code>maxSpeckleSize</code> - The maximum speckle size to consider it a speckle. Larger blobs are not
affected by the algorithm</dd>
<dd><code>maxDiff</code> - Maximum difference between neighbor disparity pixels to put them into the same
blob. Note that since StereoBM, StereoSGBM and may be other algorithms return a fixed-point
disparity map, where disparity values are multiplied by 16, this scale factor should be taken into
account when specifying this parameter value.</dd>
<dd><code>buf</code> - The optional temporary buffer to avoid memory allocation within the function.</dd>
</dl>
</li>
</ul>
<a name="find4QuadCornerSubpix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>find4QuadCornerSubpix</h4>
<pre>public static&nbsp;boolean&nbsp;find4QuadCornerSubpix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;img,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;region_size)</pre>
</li>
</ul>
<a name="findChessboardCorners-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.MatOfPoint2f-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findChessboardCorners</h4>
<pre>public static&nbsp;boolean&nbsp;findChessboardCorners(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;corners)</pre>
<div class="block">Finds the positions of internal corners of the chessboard.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Source chessboard view. It must be an 8-bit grayscale or color image.</dd>
<dd><code>patternSize</code> - Number of inner corners per a chessboard row and column
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).</dd>
<dd><code>corners</code> - Output array of detected corners.
<ul>
<li>
REF: CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
and white, rather than a fixed threshold level (computed from the average image brightness).
</li>
<li>
REF: CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before
applying fixed or adaptive thresholding.
</li>
<li>
REF: CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
</li>
<li>
REF: CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
and shortcut the call if none is found. This can drastically speed up the call in the
degenerate condition when no chessboard is observed.
</li>
</ul>
The function attempts to determine whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
are found and they are placed in a certain order (row by row, left to right in every row).
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
squares touch each other. The detected coordinates are approximate, and to determine their positions
more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
different parameters if returned coordinates are not accurate enough.
Sample usage of detecting and drawing chessboard corners: :
<code>
Size patternsize(8,6); //interior number of corners
Mat gray = ....; //source image
vector&lt;Point2f&gt; corners; //this will be filled by the detected corners
//CALIB_CB_FAST_CHECK saves a lot of time on images
//that do not contain any chessboard corners
bool patternfound = findChessboardCorners(gray, patternsize, corners,
CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
+ CALIB_CB_FAST_CHECK);
if(patternfound)
cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
</code>
<b>Note:</b> The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments. Otherwise, if there is no
border and the background is dark, the outer black squares cannot be segmented properly and so the
square grouping and ordering algorithm fails.
Use gen_pattern.py (REF: tutorial_camera_calibration_pattern) to create checkerboard.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findChessboardCorners-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.MatOfPoint2f-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findChessboardCorners</h4>
<pre>public static&nbsp;boolean&nbsp;findChessboardCorners(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;corners,
int&nbsp;flags)</pre>
<div class="block">Finds the positions of internal corners of the chessboard.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Source chessboard view. It must be an 8-bit grayscale or color image.</dd>
<dd><code>patternSize</code> - Number of inner corners per a chessboard row and column
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).</dd>
<dd><code>corners</code> - Output array of detected corners.</dd>
<dd><code>flags</code> - Various operation flags that can be zero or a combination of the following values:
<ul>
<li>
REF: CALIB_CB_ADAPTIVE_THRESH Use adaptive thresholding to convert the image to black
and white, rather than a fixed threshold level (computed from the average image brightness).
</li>
<li>
REF: CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before
applying fixed or adaptive thresholding.
</li>
<li>
REF: CALIB_CB_FILTER_QUADS Use additional criteria (like contour area, perimeter,
square-like shape) to filter out false quads extracted at the contour retrieval stage.
</li>
<li>
REF: CALIB_CB_FAST_CHECK Run a fast check on the image that looks for chessboard corners,
and shortcut the call if none is found. This can drastically speed up the call in the
degenerate condition when no chessboard is observed.
</li>
</ul>
The function attempts to determine whether the input image is a view of the chessboard pattern and
locate the internal chessboard corners. The function returns a non-zero value if all of the corners
are found and they are placed in a certain order (row by row, left to right in every row).
Otherwise, if the function fails to find all the corners or reorder them, it returns 0. For example,
a regular chessboard has 8 x 8 squares and 7 x 7 internal corners, that is, points where the black
squares touch each other. The detected coordinates are approximate, and to determine their positions
more accurately, the function calls cornerSubPix. You also may use the function cornerSubPix with
different parameters if returned coordinates are not accurate enough.
Sample usage of detecting and drawing chessboard corners: :
<code>
Size patternsize(8,6); //interior number of corners
Mat gray = ....; //source image
vector&lt;Point2f&gt; corners; //this will be filled by the detected corners
//CALIB_CB_FAST_CHECK saves a lot of time on images
//that do not contain any chessboard corners
bool patternfound = findChessboardCorners(gray, patternsize, corners,
CALIB_CB_ADAPTIVE_THRESH + CALIB_CB_NORMALIZE_IMAGE
+ CALIB_CB_FAST_CHECK);
if(patternfound)
cornerSubPix(gray, corners, Size(11, 11), Size(-1, -1),
TermCriteria(CV_TERMCRIT_EPS + CV_TERMCRIT_ITER, 30, 0.1));
drawChessboardCorners(img, patternsize, Mat(corners), patternfound);
</code>
<b>Note:</b> The function requires white space (like a square-thick border, the wider the better) around
the board to make the detection more robust in various environments. Otherwise, if there is no
border and the background is dark, the outer black squares cannot be segmented properly and so the
square grouping and ordering algorithm fails.
Use gen_pattern.py (REF: tutorial_camera_calibration_pattern) to create checkerboard.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findChessboardCornersSB-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findChessboardCornersSB</h4>
<pre>public static&nbsp;boolean&nbsp;findChessboardCornersSB(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners)</pre>
</li>
</ul>
<a name="findChessboardCornersSB-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findChessboardCornersSB</h4>
<pre>public static&nbsp;boolean&nbsp;findChessboardCornersSB(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
int&nbsp;flags)</pre>
</li>
</ul>
<a name="findChessboardCornersSBWithMeta-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-int-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findChessboardCornersSBWithMeta</h4>
<pre>public static&nbsp;boolean&nbsp;findChessboardCornersSBWithMeta(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;corners,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;meta)</pre>
<div class="block">Finds the positions of internal corners of the chessboard using a sector based approach.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>image</code> - Source chessboard view. It must be an 8-bit grayscale or color image.</dd>
<dd><code>patternSize</code> - Number of inner corners per a chessboard row and column
( patternSize = cv::Size(points_per_row,points_per_colum) = cv::Size(columns,rows) ).</dd>
<dd><code>corners</code> - Output array of detected corners.</dd>
<dd><code>flags</code> - Various operation flags that can be zero or a combination of the following values:
<ul>
<li>
REF: CALIB_CB_NORMALIZE_IMAGE Normalize the image gamma with equalizeHist before detection.
</li>
<li>
REF: CALIB_CB_EXHAUSTIVE Run an exhaustive search to improve detection rate.
</li>
<li>
REF: CALIB_CB_ACCURACY Up sample input image to improve sub-pixel accuracy due to aliasing effects.
</li>
<li>
REF: CALIB_CB_LARGER The detected pattern is allowed to be larger than patternSize (see description).
</li>
<li>
REF: CALIB_CB_MARKER The detected pattern must have a marker (see description).
This should be used if an accurate camera calibration is required.</dd>
<dd><code>meta</code> - Optional output arrray of detected corners (CV_8UC1 and size = cv::Size(columns,rows)).
Each entry stands for one corner of the pattern and can have one of the following values:
</li>
<li>
0 = no meta data attached
</li>
<li>
1 = left-top corner of a black cell
</li>
<li>
2 = left-top corner of a white cell
</li>
<li>
3 = left-top corner of a black cell with a white marker dot
</li>
<li>
4 = left-top corner of a white cell with a black marker dot (pattern origin in case of markers otherwise first corner)
</li>
</ul>
The function is analog to #findChessboardCorners but uses a localized radon
transformation approximated by box filters being more robust to all sort of
noise, faster on larger images and is able to directly return the sub-pixel
position of the internal chessboard corners. The Method is based on the paper
CITE: duda2018 "Accurate Detection and Localization of Checkerboard Corners for
Calibration" demonstrating that the returned sub-pixel positions are more
accurate than the one returned by cornerSubPix allowing a precise camera
calibration for demanding applications.
In the case, the flags REF: CALIB_CB_LARGER or REF: CALIB_CB_MARKER are given,
the result can be recovered from the optional meta array. Both flags are
helpful to use calibration patterns exceeding the field of view of the camera.
These oversized patterns allow more accurate calibrations as corners can be
utilized, which are as close as possible to the image borders. For a
consistent coordinate system across all images, the optional marker (see image
below) can be used to move the origin of the board to the location where the
black circle is located.
<b>Note:</b> The function requires a white boarder with roughly the same width as one
of the checkerboard fields around the whole board to improve the detection in
various environments. In addition, because of the localized radon
transformation it is beneficial to use round corners for the field corners
which are located on the outside of the board. The following figure illustrates
a sample checkerboard optimized for the detection. However, any other checkerboard
can be used as well.
Use gen_pattern.py (REF: tutorial_camera_calibration_pattern) to create checkerboard.
![Checkerboard](pics/checkerboard_radon.png)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findCirclesGrid-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findCirclesGrid</h4>
<pre>public static&nbsp;boolean&nbsp;findCirclesGrid(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;centers)</pre>
</li>
</ul>
<a name="findCirclesGrid-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findCirclesGrid</h4>
<pre>public static&nbsp;boolean&nbsp;findCirclesGrid(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;image,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;patternSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;centers,
int&nbsp;flags)</pre>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .
are feature points from cameras with same focal length and principal point.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
confidence (probability) that the estimated matrix is correct.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>focal</code> - focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
confidence (probability) that the estimated matrix is correct.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>focal</code> - focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
confidence (probability) that the estimated matrix is correct.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>focal</code> - focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.</dd>
<dd><code>method</code> - Method for computing a fundamental matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
confidence (probability) that the estimated matrix is correct.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>focal</code> - focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.</dd>
<dd><code>method</code> - Method for computing a fundamental matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>focal</code> - focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.</dd>
<dd><code>method</code> - Method for computing a fundamental matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-double-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>focal</code> - focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.</dd>
<dd><code>method</code> - Method for computing a fundamental matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
for the other points. The array is computed only in the RANSAC and LMedS methods.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-int-double-double-int-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>focal</code> - focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.</dd>
<dd><code>method</code> - Method for computing a fundamental matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>mask</code> - Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
</li>
</ul>
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-int-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
int&nbsp;maxIters,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera intrinsic matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>mask</code> - Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>cameraMatrix2</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>distCoeffs1</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>distCoeffs2</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>cameraMatrix2</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>distCoeffs1</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>distCoeffs2</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method,
double&nbsp;prob)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>cameraMatrix2</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>distCoeffs1</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>distCoeffs2</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>cameraMatrix2</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>distCoeffs1</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>distCoeffs2</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<div class="block">Calculates an essential matrix from the corresponding points in two images from potentially two different cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N (N &gt;= 5) 2D points from the first image. The point coordinates should
be floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>cameraMatrix2</code> - Camera matrix \(K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera matrix. If this assumption does not hold for your use case, use
#undistortPoints with <code>P = cv::NoArray()</code> for both cameras to transform image points
to normalized image coordinates, which are valid for the identity camera matrix. When
passing these coordinates, pass the identity matrix for this parameter.</dd>
<dd><code>distCoeffs1</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>distCoeffs2</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>mask</code> - Output array of N elements, every element of which is set to 0 for outliers and to 1
for the other points. The array is computed only in the RANSAC and LMedS methods.
</li>
</ul>
This function estimates essential matrix based on the five-point algorithm solver in CITE: Nister03 .
CITE: SteweniusCFS is also a related. The epipolar geometry is described by the following equation:
\([p_2; 1]^T K^{-T} E K^{-1} [p_1; 1] = 0\)
where \(E\) is an essential matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively. The result of this function may be passed further to
#decomposeEssentialMat or #recoverPose to recover the relative pose between cameras.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findEssentialMat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findEssentialMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findEssentialMat(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dist_coeff1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dist_coeff2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</pre>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2)</pre>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method)</pre>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</pre>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence)</pre>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence,
int&nbsp;maxIters)</pre>
<div class="block">Calculates a fundamental matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>method</code> - Method for computing a fundamental matrix.
<ul>
<li>
REF: FM_7POINT for a 7-point algorithm. \(N = 7\)
</li>
<li>
REF: FM_8POINT for an 8-point algorithm. \(N \ge 8\)
</li>
<li>
REF: FM_RANSAC for the RANSAC algorithm. \(N \ge 8\)
</li>
<li>
REF: FM_LMEDS for the LMedS algorithm. \(N \ge 8\)</dd>
<dd><code>ransacReprojThreshold</code> - Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>confidence</code> - Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
of confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
</li>
</ul>
The epipolar geometry is described by the following equation:
\([p_2; 1]^T F [p_1; 1] = 0\)
where \(F\) is a fundamental matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively.
The function calculates the fundamental matrix using one of four methods listed above and returns
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
algorithm, the function may return up to 3 solutions ( \(9 \times 3\) matrix that stores all 3
matrices sequentially).
The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
epipolar lines corresponding to the specified points. It can also be passed to
#stereoRectifyUncalibrated to compute the rectification transformation. :
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
Mat fundamental_matrix =
findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-int-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence,
int&nbsp;maxIters,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<div class="block">Calculates a fundamental matrix from the corresponding points in two images.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>method</code> - Method for computing a fundamental matrix.
<ul>
<li>
REF: FM_7POINT for a 7-point algorithm. \(N = 7\)
</li>
<li>
REF: FM_8POINT for an 8-point algorithm. \(N \ge 8\)
</li>
<li>
REF: FM_RANSAC for the RANSAC algorithm. \(N \ge 8\)
</li>
<li>
REF: FM_LMEDS for the LMedS algorithm. \(N \ge 8\)</dd>
<dd><code>ransacReprojThreshold</code> - Parameter used only for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>confidence</code> - Parameter used for the RANSAC and LMedS methods only. It specifies a desirable level
of confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>mask</code> - optional output mask</dd>
<dd><code>maxIters</code> - The maximum number of robust method iterations.
</li>
</ul>
The epipolar geometry is described by the following equation:
\([p_2; 1]^T F [p_1; 1] = 0\)
where \(F\) is a fundamental matrix, \(p_1\) and \(p_2\) are corresponding points in the first and the
second images, respectively.
The function calculates the fundamental matrix using one of four methods listed above and returns
the found fundamental matrix. Normally just one matrix is found. But in case of the 7-point
algorithm, the function may return up to 3 solutions ( \(9 \times 3\) matrix that stores all 3
matrices sequentially).
The calculated fundamental matrix may be passed further to computeCorrespondEpilines that finds the
epipolar lines corresponding to the specified points. It can also be passed to
#stereoRectifyUncalibrated to compute the rectification transformation. :
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
Mat fundamental_matrix =
findFundamentalMat(points1, points2, FM_RANSAC, 3, 0.99);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
double&nbsp;confidence,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
</li>
</ul>
<a name="findFundamentalMat-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findFundamentalMat</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findFundamentalMat(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points1,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</pre>
</li>
</ul>
<a name="findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findHomography</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findHomography(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints)</pre>
<div class="block">Finds a perspective transformation between two planes.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>srcPoints</code> - Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector&lt;Point2f&gt; .</dd>
<dd><code>dstPoints</code> - Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector&lt;Point2f&gt; .
<ul>
<li>
<b>0</b> - a regular method using all the points, i.e., the least squares method
</li>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
</li>
<li>
REF: RHO - PROSAC-based robust method
(used in the RANSAC and RHO methods only). That is, if
\(\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 &gt; \texttt{ransacReprojThreshold}\)
then the point \(i\) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
mask values are ignored.
</li>
</ul>
The function finds and returns the perspective transformation \(H\) between the source and the
destination planes:
\(s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\)
so that the back-projection error
\(\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\)
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs ( \(srcPoints_i\), \(dstPoints_i\) ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \(h_{33}=1\). Note that whenever an \(H\) matrix
cannot be estimated, an empty one will be returned.
SEE:
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findHomography</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findHomography(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method)</pre>
<div class="block">Finds a perspective transformation between two planes.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>srcPoints</code> - Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector&lt;Point2f&gt; .</dd>
<dd><code>dstPoints</code> - Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector&lt;Point2f&gt; .</dd>
<dd><code>method</code> - Method used to compute a homography matrix. The following methods are possible:
<ul>
<li>
<b>0</b> - a regular method using all the points, i.e., the least squares method
</li>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
</li>
<li>
REF: RHO - PROSAC-based robust method
(used in the RANSAC and RHO methods only). That is, if
\(\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 &gt; \texttt{ransacReprojThreshold}\)
then the point \(i\) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
mask values are ignored.
</li>
</ul>
The function finds and returns the perspective transformation \(H\) between the source and the
destination planes:
\(s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\)
so that the back-projection error
\(\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\)
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs ( \(srcPoints_i\), \(dstPoints_i\) ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \(h_{33}=1\). Note that whenever an \(H\) matrix
cannot be estimated, an empty one will be returned.
SEE:
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findHomography</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findHomography(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold)</pre>
<div class="block">Finds a perspective transformation between two planes.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>srcPoints</code> - Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector&lt;Point2f&gt; .</dd>
<dd><code>dstPoints</code> - Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector&lt;Point2f&gt; .</dd>
<dd><code>method</code> - Method used to compute a homography matrix. The following methods are possible:
<ul>
<li>
<b>0</b> - a regular method using all the points, i.e., the least squares method
</li>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
</li>
<li>
REF: RHO - PROSAC-based robust method</dd>
<dd><code>ransacReprojThreshold</code> - Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\(\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 &gt; \texttt{ransacReprojThreshold}\)
then the point \(i\) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.
mask values are ignored.
</li>
</ul>
The function finds and returns the perspective transformation \(H\) between the source and the
destination planes:
\(s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\)
so that the back-projection error
\(\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\)
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs ( \(srcPoints_i\), \(dstPoints_i\) ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \(h_{33}=1\). Note that whenever an \(H\) matrix
cannot be estimated, an empty one will be returned.
SEE:
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findHomography</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findHomography(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<div class="block">Finds a perspective transformation between two planes.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>srcPoints</code> - Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector&lt;Point2f&gt; .</dd>
<dd><code>dstPoints</code> - Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector&lt;Point2f&gt; .</dd>
<dd><code>method</code> - Method used to compute a homography matrix. The following methods are possible:
<ul>
<li>
<b>0</b> - a regular method using all the points, i.e., the least squares method
</li>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
</li>
<li>
REF: RHO - PROSAC-based robust method</dd>
<dd><code>ransacReprojThreshold</code> - Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\(\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 &gt; \texttt{ransacReprojThreshold}\)
then the point \(i\) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.</dd>
<dd><code>mask</code> - Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
mask values are ignored.
</li>
</ul>
The function finds and returns the perspective transformation \(H\) between the source and the
destination planes:
\(s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\)
so that the back-projection error
\(\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\)
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs ( \(srcPoints_i\), \(dstPoints_i\) ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \(h_{33}=1\). Note that whenever an \(H\) matrix
cannot be estimated, an empty one will be returned.
SEE:
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findHomography</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findHomography(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
int&nbsp;maxIters)</pre>
<div class="block">Finds a perspective transformation between two planes.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>srcPoints</code> - Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector&lt;Point2f&gt; .</dd>
<dd><code>dstPoints</code> - Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector&lt;Point2f&gt; .</dd>
<dd><code>method</code> - Method used to compute a homography matrix. The following methods are possible:
<ul>
<li>
<b>0</b> - a regular method using all the points, i.e., the least squares method
</li>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
</li>
<li>
REF: RHO - PROSAC-based robust method</dd>
<dd><code>ransacReprojThreshold</code> - Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\(\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 &gt; \texttt{ransacReprojThreshold}\)
then the point \(i\) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.</dd>
<dd><code>mask</code> - Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
mask values are ignored.</dd>
<dd><code>maxIters</code> - The maximum number of RANSAC iterations.
</li>
</ul>
The function finds and returns the perspective transformation \(H\) between the source and the
destination planes:
\(s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\)
so that the back-projection error
\(\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\)
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs ( \(srcPoints_i\), \(dstPoints_i\) ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \(h_{33}=1\). Note that whenever an \(H\) matrix
cannot be estimated, an empty one will be returned.
SEE:
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-int-double-org.opencv.core.Mat-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findHomography</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findHomography(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
int&nbsp;method,
double&nbsp;ransacReprojThreshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
int&nbsp;maxIters,
double&nbsp;confidence)</pre>
<div class="block">Finds a perspective transformation between two planes.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>srcPoints</code> - Coordinates of the points in the original plane, a matrix of the type CV_32FC2
or vector&lt;Point2f&gt; .</dd>
<dd><code>dstPoints</code> - Coordinates of the points in the target plane, a matrix of the type CV_32FC2 or
a vector&lt;Point2f&gt; .</dd>
<dd><code>method</code> - Method used to compute a homography matrix. The following methods are possible:
<ul>
<li>
<b>0</b> - a regular method using all the points, i.e., the least squares method
</li>
<li>
REF: RANSAC - RANSAC-based robust method
</li>
<li>
REF: LMEDS - Least-Median robust method
</li>
<li>
REF: RHO - PROSAC-based robust method</dd>
<dd><code>ransacReprojThreshold</code> - Maximum allowed reprojection error to treat a point pair as an inlier
(used in the RANSAC and RHO methods only). That is, if
\(\| \texttt{dstPoints} _i - \texttt{convertPointsHomogeneous} ( \texttt{H} * \texttt{srcPoints} _i) \|_2 &gt; \texttt{ransacReprojThreshold}\)
then the point \(i\) is considered as an outlier. If srcPoints and dstPoints are measured in pixels,
it usually makes sense to set this parameter somewhere in the range of 1 to 10.</dd>
<dd><code>mask</code> - Optional output mask set by a robust method ( RANSAC or LMeDS ). Note that the input
mask values are ignored.</dd>
<dd><code>maxIters</code> - The maximum number of RANSAC iterations.</dd>
<dd><code>confidence</code> - Confidence level, between 0 and 1.
</li>
</ul>
The function finds and returns the perspective transformation \(H\) between the source and the
destination planes:
\(s_i \vecthree{x'_i}{y'_i}{1} \sim H \vecthree{x_i}{y_i}{1}\)
so that the back-projection error
\(\sum _i \left ( x'_i- \frac{h_{11} x_i + h_{12} y_i + h_{13}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2+ \left ( y'_i- \frac{h_{21} x_i + h_{22} y_i + h_{23}}{h_{31} x_i + h_{32} y_i + h_{33}} \right )^2\)
is minimized. If the parameter method is set to the default value 0, the function uses all the point
pairs to compute an initial homography estimate with a simple least-squares scheme.
However, if not all of the point pairs ( \(srcPoints_i\), \(dstPoints_i\) ) fit the rigid perspective
transformation (that is, there are some outliers), this initial estimate will be poor. In this case,
you can use one of the three robust methods. The methods RANSAC, LMeDS and RHO try many different
random subsets of the corresponding point pairs (of four pairs each, collinear pairs are discarded), estimate the homography matrix
using this subset and a simple least-squares algorithm, and then compute the quality/goodness of the
computed homography (which is the number of inliers for RANSAC or the least median re-projection error for
LMeDS). The best subset is then used to produce the initial estimate of the homography matrix and
the mask of inliers/outliers.
Regardless of the method, robust or not, the computed homography matrix is refined further (using
inliers only in case of a robust method) with the Levenberg-Marquardt method to reduce the
re-projection error even more.
The methods RANSAC and RHO can handle practically any ratio of outliers but need a threshold to
distinguish inliers from outliers. The method LMeDS does not need any threshold but it works
correctly only when there are more than 50% of inliers. Finally, if there are no outliers and the
noise is rather small, use the default method (method=0).
The function is used to find initial intrinsic and extrinsic matrices. Homography matrix is
determined up to a scale. Thus, it is normalized so that \(h_{33}=1\). Note that whenever an \(H\) matrix
cannot be estimated, an empty one will be returned.
SEE:
getAffineTransform, estimateAffine2D, estimateAffinePartial2D, getPerspectiveTransform, warpPerspective,
perspectiveTransform</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="findHomography-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>findHomography</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;findHomography(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;srcPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dstPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</pre>
</li>
</ul>
<a name="fisheye_calibrate-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_calibrate</h4>
<pre>public static&nbsp;double&nbsp;fisheye_calibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs)</pre>
<div class="block">Performs camera calibaration</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - vector of vectors of calibration pattern points in the calibration pattern
coordinate space.</dd>
<dd><code>imagePoints</code> - vector of vectors of the projections of calibration pattern points.
imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
objectPoints[i].size() for each i.</dd>
<dd><code>image_size</code> - Size of the image used only to initialize the camera intrinsic matrix.</dd>
<dd><code>K</code> - Output 3x3 floating-point camera intrinsic matrix
\(\cameramatrix{A}\) . If
REF: fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.</dd>
<dd><code>D</code> - Output vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
That is, each k-th rotation vector together with the corresponding k-th translation vector (see
the next output parameter description) brings the calibration pattern from the model coordinate
space (in which object points are specified) to the world coordinate space, that is, a real
position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view.
<ul>
<li>
REF: fisheye::CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
</li>
<li>
REF: fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
</li>
<li>
REF: fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
</li>
<li>
REF: fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_K1,..., REF: fisheye::CALIB_FIX_K4 Selected distortion coefficients
are set to zeros and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when REF: fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
</li>
<li>
REF: fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
optimization. It is the \(max(width,height)/\pi\) or the provided \(f_x\), \(f_y\) when REF: fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="fisheye_calibrate-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_calibrate</h4>
<pre>public static&nbsp;double&nbsp;fisheye_calibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags)</pre>
<div class="block">Performs camera calibaration</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - vector of vectors of calibration pattern points in the calibration pattern
coordinate space.</dd>
<dd><code>imagePoints</code> - vector of vectors of the projections of calibration pattern points.
imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
objectPoints[i].size() for each i.</dd>
<dd><code>image_size</code> - Size of the image used only to initialize the camera intrinsic matrix.</dd>
<dd><code>K</code> - Output 3x3 floating-point camera intrinsic matrix
\(\cameramatrix{A}\) . If
REF: fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.</dd>
<dd><code>D</code> - Output vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
That is, each k-th rotation vector together with the corresponding k-th translation vector (see
the next output parameter description) brings the calibration pattern from the model coordinate
space (in which object points are specified) to the world coordinate space, that is, a real
position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: fisheye::CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
</li>
<li>
REF: fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
</li>
<li>
REF: fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
</li>
<li>
REF: fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_K1,..., REF: fisheye::CALIB_FIX_K4 Selected distortion coefficients
are set to zeros and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when REF: fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
</li>
<li>
REF: fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
optimization. It is the \(max(width,height)/\pi\) or the provided \(f_x\), \(f_y\) when REF: fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="fisheye_calibrate-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_calibrate</h4>
<pre>public static&nbsp;double&nbsp;fisheye_calibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block">Performs camera calibaration</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - vector of vectors of calibration pattern points in the calibration pattern
coordinate space.</dd>
<dd><code>imagePoints</code> - vector of vectors of the projections of calibration pattern points.
imagePoints.size() and objectPoints.size() and imagePoints[i].size() must be equal to
objectPoints[i].size() for each i.</dd>
<dd><code>image_size</code> - Size of the image used only to initialize the camera intrinsic matrix.</dd>
<dd><code>K</code> - Output 3x3 floating-point camera intrinsic matrix
\(\cameramatrix{A}\) . If
REF: fisheye::CALIB_USE_INTRINSIC_GUESS is specified, some or all of fx, fy, cx, cy must be
initialized before calling the function.</dd>
<dd><code>D</code> - Output vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>rvecs</code> - Output vector of rotation vectors (see Rodrigues ) estimated for each pattern view.
That is, each k-th rotation vector together with the corresponding k-th translation vector (see
the next output parameter description) brings the calibration pattern from the model coordinate
space (in which object points are specified) to the world coordinate space, that is, a real
position of the calibration pattern in the k-th pattern view (k=0.. *M* -1).</dd>
<dd><code>tvecs</code> - Output vector of translation vectors estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: fisheye::CALIB_USE_INTRINSIC_GUESS cameraMatrix contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center ( imageSize is used), and focal distances are computed in a least-squares fashion.
</li>
<li>
REF: fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
</li>
<li>
REF: fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
</li>
<li>
REF: fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_K1,..., REF: fisheye::CALIB_FIX_K4 Selected distortion coefficients
are set to zeros and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_PRINCIPAL_POINT The principal point is not changed during the global
optimization. It stays at the center or at a different location specified when REF: fisheye::CALIB_USE_INTRINSIC_GUESS is set too.
</li>
<li>
REF: fisheye::CALIB_FIX_FOCAL_LENGTH The focal length is not changed during the global
optimization. It is the \(max(width,height)/\pi\) or the provided \(f_x\), \(f_y\) when REF: fisheye::CALIB_USE_INTRINSIC_GUESS is set too.</dd>
<dd><code>criteria</code> - Termination criteria for the iterative optimization algorithm.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="fisheye_distortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_distortPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_distortPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</pre>
<div class="block">Distorts 2D points using fisheye model.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>undistorted</code> - Array of object points, 1xN/Nx1 2-channel (or vector&lt;Point2f&gt; ), where N is
the number of points in the view.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>distorted</code> - Output array of image points, 1xN/Nx1 2-channel, or vector&lt;Point2f&gt; .
Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
This means if you want to transform back points undistorted with #fisheye::undistortPoints you have to
multiply them with \(P^{-1}\).</dd>
</dl>
</li>
</ul>
<a name="fisheye_distortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_distortPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_distortPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
double&nbsp;alpha)</pre>
<div class="block">Distorts 2D points using fisheye model.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>undistorted</code> - Array of object points, 1xN/Nx1 2-channel (or vector&lt;Point2f&gt; ), where N is
the number of points in the view.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>alpha</code> - The skew coefficient.</dd>
<dd><code>distorted</code> - Output array of image points, 1xN/Nx1 2-channel, or vector&lt;Point2f&gt; .
Note that the function assumes the camera intrinsic matrix of the undistorted points to be identity.
This means if you want to transform back points undistorted with #fisheye::undistortPoints you have to
multiply them with \(P^{-1}\).</dd>
</dl>
</li>
</ul>
<a name="fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_estimateNewCameraMatrixForUndistortRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_estimateNewCameraMatrixForUndistortRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P)</pre>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>image_size</code> - Size of the image</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>R</code> - Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel</dd>
<dd><code>P</code> - New camera intrinsic matrix (3x3) or new projection matrix (3x4)
length. Balance is in range of [0, 1].</dd>
</dl>
</li>
</ul>
<a name="fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_estimateNewCameraMatrixForUndistortRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_estimateNewCameraMatrixForUndistortRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
double&nbsp;balance)</pre>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>image_size</code> - Size of the image</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>R</code> - Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel</dd>
<dd><code>P</code> - New camera intrinsic matrix (3x3) or new projection matrix (3x4)</dd>
<dd><code>balance</code> - Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].</dd>
</dl>
</li>
</ul>
<a name="fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_estimateNewCameraMatrixForUndistortRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_estimateNewCameraMatrixForUndistortRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
double&nbsp;balance,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;new_size)</pre>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>image_size</code> - Size of the image</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>R</code> - Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel</dd>
<dd><code>P</code> - New camera intrinsic matrix (3x3) or new projection matrix (3x4)</dd>
<dd><code>balance</code> - Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].</dd>
<dd><code>new_size</code> - the new size</dd>
</dl>
</li>
</ul>
<a name="fisheye_estimateNewCameraMatrixForUndistortRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Size-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_estimateNewCameraMatrixForUndistortRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_estimateNewCameraMatrixForUndistortRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;image_size,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
double&nbsp;balance,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;new_size,
double&nbsp;fov_scale)</pre>
<div class="block">Estimates new camera intrinsic matrix for undistortion or rectification.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>image_size</code> - Size of the image</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>R</code> - Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel</dd>
<dd><code>P</code> - New camera intrinsic matrix (3x3) or new projection matrix (3x4)</dd>
<dd><code>balance</code> - Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].</dd>
<dd><code>new_size</code> - the new size</dd>
<dd><code>fov_scale</code> - Divisor for new focal length.</dd>
</dl>
</li>
</ul>
<a name="fisheye_initUndistortRectifyMap-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_initUndistortRectifyMap</h4>
<pre>public static&nbsp;void&nbsp;fisheye_initUndistortRectifyMap(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size,
int&nbsp;m1type,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map2)</pre>
<div class="block">Computes undistortion and rectification maps for image transform by #remap. If D is empty zero
distortion is used, if R or P is empty identity matrixes are used.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>R</code> - Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel</dd>
<dd><code>P</code> - New camera intrinsic matrix (3x3) or new projection matrix (3x4)</dd>
<dd><code>size</code> - Undistorted image size.</dd>
<dd><code>m1type</code> - Type of the first output map that can be CV_32FC1 or CV_16SC2 . See #convertMaps
for details.</dd>
<dd><code>map1</code> - The first output map.</dd>
<dd><code>map2</code> - The second output map.</dd>
</dl>
</li>
</ul>
<a name="fisheye_projectPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_projectPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_projectPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</pre>
</li>
</ul>
<a name="fisheye_projectPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_projectPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_projectPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
double&nbsp;alpha)</pre>
</li>
</ul>
<a name="fisheye_projectPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_projectPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_projectPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian)</pre>
</li>
</ul>
<a name="fisheye_stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_stereoCalibrate</h4>
<pre>public static&nbsp;double&nbsp;fisheye_stereoCalibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T)</pre>
<div class="block">Performs stereo calibration</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points.</dd>
<dd><code>imagePoints1</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the first camera.</dd>
<dd><code>imagePoints2</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the second camera.</dd>
<dd><code>K1</code> - Input/output first camera intrinsic matrix:
\(\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\) , \(j = 0,\, 1\) . If
any of REF: fisheye::CALIB_USE_INTRINSIC_GUESS , REF: fisheye::CALIB_FIX_INTRINSIC are specified,
some or all of the matrix components must be initialized.</dd>
<dd><code>D1</code> - Input/output vector of distortion coefficients \(\distcoeffsfisheye\) of 4 elements.</dd>
<dd><code>K2</code> - Input/output second camera intrinsic matrix. The parameter is similar to K1 .</dd>
<dd><code>D2</code> - Input/output lens distortion coefficients for the second camera. The parameter is
similar to D1 .</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix between the 1st and the 2nd camera coordinate systems.</dd>
<dd><code>T</code> - Output translation vector between the coordinate systems of the cameras.
<ul>
<li>
REF: fisheye::CALIB_FIX_INTRINSIC Fix K1, K2? and D1, D2? so that only R, T matrices
are estimated.
</li>
<li>
REF: fisheye::CALIB_USE_INTRINSIC_GUESS K1, K2 contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center (imageSize is used), and focal distances are computed in a least-squares fashion.
</li>
<li>
REF: fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
</li>
<li>
REF: fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
</li>
<li>
REF: fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_K1,..., REF: fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
zero.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="fisheye_stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_stereoCalibrate</h4>
<pre>public static&nbsp;double&nbsp;fisheye_stereoCalibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
int&nbsp;flags)</pre>
<div class="block">Performs stereo calibration</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points.</dd>
<dd><code>imagePoints1</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the first camera.</dd>
<dd><code>imagePoints2</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the second camera.</dd>
<dd><code>K1</code> - Input/output first camera intrinsic matrix:
\(\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\) , \(j = 0,\, 1\) . If
any of REF: fisheye::CALIB_USE_INTRINSIC_GUESS , REF: fisheye::CALIB_FIX_INTRINSIC are specified,
some or all of the matrix components must be initialized.</dd>
<dd><code>D1</code> - Input/output vector of distortion coefficients \(\distcoeffsfisheye\) of 4 elements.</dd>
<dd><code>K2</code> - Input/output second camera intrinsic matrix. The parameter is similar to K1 .</dd>
<dd><code>D2</code> - Input/output lens distortion coefficients for the second camera. The parameter is
similar to D1 .</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix between the 1st and the 2nd camera coordinate systems.</dd>
<dd><code>T</code> - Output translation vector between the coordinate systems of the cameras.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: fisheye::CALIB_FIX_INTRINSIC Fix K1, K2? and D1, D2? so that only R, T matrices
are estimated.
</li>
<li>
REF: fisheye::CALIB_USE_INTRINSIC_GUESS K1, K2 contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center (imageSize is used), and focal distances are computed in a least-squares fashion.
</li>
<li>
REF: fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
</li>
<li>
REF: fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
</li>
<li>
REF: fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_K1,..., REF: fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
zero.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="fisheye_stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_stereoCalibrate</h4>
<pre>public static&nbsp;double&nbsp;fisheye_stereoCalibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block">Performs stereo calibration</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points.</dd>
<dd><code>imagePoints1</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the first camera.</dd>
<dd><code>imagePoints2</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the second camera.</dd>
<dd><code>K1</code> - Input/output first camera intrinsic matrix:
\(\vecthreethree{f_x^{(j)}}{0}{c_x^{(j)}}{0}{f_y^{(j)}}{c_y^{(j)}}{0}{0}{1}\) , \(j = 0,\, 1\) . If
any of REF: fisheye::CALIB_USE_INTRINSIC_GUESS , REF: fisheye::CALIB_FIX_INTRINSIC are specified,
some or all of the matrix components must be initialized.</dd>
<dd><code>D1</code> - Input/output vector of distortion coefficients \(\distcoeffsfisheye\) of 4 elements.</dd>
<dd><code>K2</code> - Input/output second camera intrinsic matrix. The parameter is similar to K1 .</dd>
<dd><code>D2</code> - Input/output lens distortion coefficients for the second camera. The parameter is
similar to D1 .</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix between the 1st and the 2nd camera coordinate systems.</dd>
<dd><code>T</code> - Output translation vector between the coordinate systems of the cameras.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: fisheye::CALIB_FIX_INTRINSIC Fix K1, K2? and D1, D2? so that only R, T matrices
are estimated.
</li>
<li>
REF: fisheye::CALIB_USE_INTRINSIC_GUESS K1, K2 contains valid initial values of
fx, fy, cx, cy that are optimized further. Otherwise, (cx, cy) is initially set to the image
center (imageSize is used), and focal distances are computed in a least-squares fashion.
</li>
<li>
REF: fisheye::CALIB_RECOMPUTE_EXTRINSIC Extrinsic will be recomputed after each iteration
of intrinsic optimization.
</li>
<li>
REF: fisheye::CALIB_CHECK_COND The functions will check validity of condition number.
</li>
<li>
REF: fisheye::CALIB_FIX_SKEW Skew coefficient (alpha) is set to zero and stay zero.
</li>
<li>
REF: fisheye::CALIB_FIX_K1,..., REF: fisheye::CALIB_FIX_K4 Selected distortion coefficients are set to zeros and stay
zero.</dd>
<dd><code>criteria</code> - Termination criteria for the iterative optimization algorithm.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags)</pre>
<div class="block">Stereo rectification for fisheye camera model</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K1</code> - First camera intrinsic matrix.</dd>
<dd><code>D1</code> - First camera distortion parameters.</dd>
<dd><code>K2</code> - Second camera intrinsic matrix.</dd>
<dd><code>D2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix between the coordinate systems of the first and the second
cameras.</dd>
<dd><code>tvec</code> - Translation vector between coordinate systems of the cameras.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
length. Balance is in range of [0, 1].</dd>
</dl>
</li>
</ul>
<a name="fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize)</pre>
<div class="block">Stereo rectification for fisheye camera model</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K1</code> - First camera intrinsic matrix.</dd>
<dd><code>D1</code> - First camera distortion parameters.</dd>
<dd><code>K2</code> - Second camera intrinsic matrix.</dd>
<dd><code>D2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix between the coordinate systems of the first and the second
cameras.</dd>
<dd><code>tvec</code> - Translation vector between coordinate systems of the cameras.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.</dd>
<dd><code>newImageSize</code> - New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
length. Balance is in range of [0, 1].</dd>
</dl>
</li>
</ul>
<a name="fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.Size-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
double&nbsp;balance)</pre>
<div class="block">Stereo rectification for fisheye camera model</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K1</code> - First camera intrinsic matrix.</dd>
<dd><code>D1</code> - First camera distortion parameters.</dd>
<dd><code>K2</code> - Second camera intrinsic matrix.</dd>
<dd><code>D2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix between the coordinate systems of the first and the second
cameras.</dd>
<dd><code>tvec</code> - Translation vector between coordinate systems of the cameras.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.</dd>
<dd><code>newImageSize</code> - New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.</dd>
<dd><code>balance</code> - Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].</dd>
</dl>
</li>
</ul>
<a name="fisheye_stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.Size-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;fisheye_stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
double&nbsp;balance,
double&nbsp;fov_scale)</pre>
<div class="block">Stereo rectification for fisheye camera model</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>K1</code> - First camera intrinsic matrix.</dd>
<dd><code>D1</code> - First camera distortion parameters.</dd>
<dd><code>K2</code> - Second camera intrinsic matrix.</dd>
<dd><code>D2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix between the coordinate systems of the first and the second
cameras.</dd>
<dd><code>tvec</code> - Translation vector between coordinate systems of the cameras.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see reprojectImageTo3D ).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: fisheye::CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.</dd>
<dd><code>newImageSize</code> - New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to larger value can help you
preserve details in the original image, especially when there is a big radial distortion.</dd>
<dd><code>balance</code> - Sets the new focal length in range between the min focal length and the max focal
length. Balance is in range of [0, 1].</dd>
<dd><code>fov_scale</code> - Divisor for new focal length.</dd>
</dl>
</li>
</ul>
<a name="fisheye_undistortImage-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_undistortImage</h4>
<pre>public static&nbsp;void&nbsp;fisheye_undistortImage(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</pre>
<div class="block">Transforms an image to compensate for fisheye lens distortion.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>distorted</code> - image with fisheye lens distortion.</dd>
<dd><code>undistorted</code> - Output image with compensated fisheye lens distortion.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).
may additionally scale and shift the result by using a different matrix.
The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
See below the results of undistortImage.
<ul>
<li>
a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
k_4, k_5, k_6) of distortion were optimized under calibration)
<ul>
<li>
b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
k_3, k_4) of fisheye distortion were optimized under calibration)
</li>
<li>
c\) original image was captured with fisheye lens
</li>
</ul>
Pictures a) and b) almost the same. But if we consider points of image located far from the center
of image, we can notice that on image a) these points are distorted.
</li>
</ul>
![image](pics/fisheye_undistorted.jpg)</dd>
</dl>
</li>
</ul>
<a name="fisheye_undistortImage-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_undistortImage</h4>
<pre>public static&nbsp;void&nbsp;fisheye_undistortImage(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Knew)</pre>
<div class="block">Transforms an image to compensate for fisheye lens distortion.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>distorted</code> - image with fisheye lens distortion.</dd>
<dd><code>undistorted</code> - Output image with compensated fisheye lens distortion.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>Knew</code> - Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
may additionally scale and shift the result by using a different matrix.
The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
See below the results of undistortImage.
<ul>
<li>
a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
k_4, k_5, k_6) of distortion were optimized under calibration)
<ul>
<li>
b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
k_3, k_4) of fisheye distortion were optimized under calibration)
</li>
<li>
c\) original image was captured with fisheye lens
</li>
</ul>
Pictures a) and b) almost the same. But if we consider points of image located far from the center
of image, we can notice that on image a) these points are distorted.
</li>
</ul>
![image](pics/fisheye_undistorted.jpg)</dd>
</dl>
</li>
</ul>
<a name="fisheye_undistortImage-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_undistortImage</h4>
<pre>public static&nbsp;void&nbsp;fisheye_undistortImage(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Knew,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;new_size)</pre>
<div class="block">Transforms an image to compensate for fisheye lens distortion.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>distorted</code> - image with fisheye lens distortion.</dd>
<dd><code>undistorted</code> - Output image with compensated fisheye lens distortion.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>Knew</code> - Camera intrinsic matrix of the distorted image. By default, it is the identity matrix but you
may additionally scale and shift the result by using a different matrix.</dd>
<dd><code>new_size</code> - the new size
The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #fisheye::initUndistortRectifyMap (with unity R ) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
See below the results of undistortImage.
<ul>
<li>
a\) result of undistort of perspective camera model (all possible coefficients (k_1, k_2, k_3,
k_4, k_5, k_6) of distortion were optimized under calibration)
<ul>
<li>
b\) result of #fisheye::undistortImage of fisheye camera model (all possible coefficients (k_1, k_2,
k_3, k_4) of fisheye distortion were optimized under calibration)
</li>
<li>
c\) original image was captured with fisheye lens
</li>
</ul>
Pictures a) and b) almost the same. But if we consider points of image located far from the center
of image, we can notice that on image a) these points are distorted.
</li>
</ul>
![image](pics/fisheye_undistorted.jpg)</dd>
</dl>
</li>
</ul>
<a name="fisheye_undistortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_undistortPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_undistortPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D)</pre>
<div class="block">Undistorts 2D points using fisheye model</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>distorted</code> - Array of object points, 1xN/Nx1 2-channel (or vector&lt;Point2f&gt; ), where N is the
number of points in the view.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).
1-channel or 1x1 3-channel</dd>
<dd><code>undistorted</code> - Output array of image points, 1xN/Nx1 2-channel, or vector&lt;Point2f&gt; .</dd>
</dl>
</li>
</ul>
<a name="fisheye_undistortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_undistortPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_undistortPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R)</pre>
<div class="block">Undistorts 2D points using fisheye model</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>distorted</code> - Array of object points, 1xN/Nx1 2-channel (or vector&lt;Point2f&gt; ), where N is the
number of points in the view.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>R</code> - Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel</dd>
<dd><code>undistorted</code> - Output array of image points, 1xN/Nx1 2-channel, or vector&lt;Point2f&gt; .</dd>
</dl>
</li>
</ul>
<a name="fisheye_undistortPoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>fisheye_undistortPoints</h4>
<pre>public static&nbsp;void&nbsp;fisheye_undistortPoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;undistorted,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;K,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;D,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P)</pre>
<div class="block">Undistorts 2D points using fisheye model</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>distorted</code> - Array of object points, 1xN/Nx1 2-channel (or vector&lt;Point2f&gt; ), where N is the
number of points in the view.</dd>
<dd><code>K</code> - Camera intrinsic matrix \(cameramatrix{K}\).</dd>
<dd><code>D</code> - Input vector of distortion coefficients \(\distcoeffsfisheye\).</dd>
<dd><code>R</code> - Rectification transformation in the object space: 3x3 1-channel, or vector: 3x1/1x3
1-channel or 1x1 3-channel</dd>
<dd><code>P</code> - New camera intrinsic matrix (3x3) or new projection matrix (3x4)</dd>
<dd><code>undistorted</code> - Output array of image points, 1xN/Nx1 2-channel, or vector&lt;Point2f&gt; .</dd>
</dl>
</li>
</ul>
<a name="getDefaultNewCameraMatrix-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getDefaultNewCameraMatrix</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getDefaultNewCameraMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix)</pre>
<div class="block">Returns the default new camera matrix.
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
In the latter case, the new camera matrix will be:
\(\begin{bmatrix} f_x &amp;&amp; 0 &amp;&amp; ( \texttt{imgSize.width} -1)*0.5 \\ 0 &amp;&amp; f_y &amp;&amp; ( \texttt{imgSize.height} -1)*0.5 \\ 0 &amp;&amp; 0 &amp;&amp; 1 \end{bmatrix} ,\)
where \(f_x\) and \(f_y\) are \((0,0)\) and \((1,1)\) elements of cameraMatrix, respectively.
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
move the principal point. However, when you work with stereo, it is important to move the principal
points in both views to the same y-coordinate (which is required by most of stereo correspondence
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
each view where the principal points are located at the center.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera matrix.
parameter indicates whether this location should be at the image center or not.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="getDefaultNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getDefaultNewCameraMatrix</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getDefaultNewCameraMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgsize)</pre>
<div class="block">Returns the default new camera matrix.
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
In the latter case, the new camera matrix will be:
\(\begin{bmatrix} f_x &amp;&amp; 0 &amp;&amp; ( \texttt{imgSize.width} -1)*0.5 \\ 0 &amp;&amp; f_y &amp;&amp; ( \texttt{imgSize.height} -1)*0.5 \\ 0 &amp;&amp; 0 &amp;&amp; 1 \end{bmatrix} ,\)
where \(f_x\) and \(f_y\) are \((0,0)\) and \((1,1)\) elements of cameraMatrix, respectively.
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
move the principal point. However, when you work with stereo, it is important to move the principal
points in both views to the same y-coordinate (which is required by most of stereo correspondence
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
each view where the principal points are located at the center.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera matrix.</dd>
<dd><code>imgsize</code> - Camera view image size in pixels.
parameter indicates whether this location should be at the image center or not.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="getDefaultNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Size-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getDefaultNewCameraMatrix</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getDefaultNewCameraMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgsize,
boolean&nbsp;centerPrincipalPoint)</pre>
<div class="block">Returns the default new camera matrix.
The function returns the camera matrix that is either an exact copy of the input cameraMatrix (when
centerPrinicipalPoint=false ), or the modified one (when centerPrincipalPoint=true).
In the latter case, the new camera matrix will be:
\(\begin{bmatrix} f_x &amp;&amp; 0 &amp;&amp; ( \texttt{imgSize.width} -1)*0.5 \\ 0 &amp;&amp; f_y &amp;&amp; ( \texttt{imgSize.height} -1)*0.5 \\ 0 &amp;&amp; 0 &amp;&amp; 1 \end{bmatrix} ,\)
where \(f_x\) and \(f_y\) are \((0,0)\) and \((1,1)\) elements of cameraMatrix, respectively.
By default, the undistortion functions in OpenCV (see #initUndistortRectifyMap, #undistort) do not
move the principal point. However, when you work with stereo, it is important to move the principal
points in both views to the same y-coordinate (which is required by most of stereo correspondence
algorithms), and may be to the same x-coordinate too. So, you can form the new camera matrix for
each view where the principal points are located at the center.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera matrix.</dd>
<dd><code>imgsize</code> - Camera view image size in pixels.</dd>
<dd><code>centerPrincipalPoint</code> - Location of the principal point in the new camera matrix. The
parameter indicates whether this location should be at the image center or not.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getOptimalNewCameraMatrix</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getOptimalNewCameraMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha)</pre>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix.</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>imageSize</code> - Original image size.</dd>
<dd><code>alpha</code> - Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
#stereoRectify for details.
undistorted image. See roi1, roi2 description in #stereoRectify .
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>new_camera_matrix Output new camera intrinsic matrix.
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha&gt;0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
#initUndistortRectifyMap to produce the maps for #remap .</dd>
</dl>
</li>
</ul>
<a name="getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getOptimalNewCameraMatrix</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getOptimalNewCameraMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize)</pre>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix.</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>imageSize</code> - Original image size.</dd>
<dd><code>alpha</code> - Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
#stereoRectify for details.</dd>
<dd><code>newImgSize</code> - Image size after rectification. By default, it is set to imageSize .
undistorted image. See roi1, roi2 description in #stereoRectify .
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>new_camera_matrix Output new camera intrinsic matrix.
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha&gt;0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
#initUndistortRectifyMap to produce the maps for #remap .</dd>
</dl>
</li>
</ul>
<a name="getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-org.opencv.core.Size-org.opencv.core.Rect-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getOptimalNewCameraMatrix</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getOptimalNewCameraMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI)</pre>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix.</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>imageSize</code> - Original image size.</dd>
<dd><code>alpha</code> - Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
#stereoRectify for details.</dd>
<dd><code>newImgSize</code> - Image size after rectification. By default, it is set to imageSize .</dd>
<dd><code>validPixROI</code> - Optional output rectangle that outlines all-good-pixels region in the
undistorted image. See roi1, roi2 description in #stereoRectify .
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>new_camera_matrix Output new camera intrinsic matrix.
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha&gt;0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
#initUndistortRectifyMap to produce the maps for #remap .</dd>
</dl>
</li>
</ul>
<a name="getOptimalNewCameraMatrix-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-double-org.opencv.core.Size-org.opencv.core.Rect-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getOptimalNewCameraMatrix</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;getOptimalNewCameraMatrix(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI,
boolean&nbsp;centerPrincipalPoint)</pre>
<div class="block">Returns the new camera intrinsic matrix based on the free scaling parameter.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix.</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>imageSize</code> - Original image size.</dd>
<dd><code>alpha</code> - Free scaling parameter between 0 (when all the pixels in the undistorted image are
valid) and 1 (when all the source image pixels are retained in the undistorted image). See
#stereoRectify for details.</dd>
<dd><code>newImgSize</code> - Image size after rectification. By default, it is set to imageSize .</dd>
<dd><code>validPixROI</code> - Optional output rectangle that outlines all-good-pixels region in the
undistorted image. See roi1, roi2 description in #stereoRectify .</dd>
<dd><code>centerPrincipalPoint</code> - Optional flag that indicates whether in the new camera intrinsic matrix the
principal point should be at the image center or not. By default, the principal point is chosen to
best fit a subset of the source image (determined by alpha) to the corrected image.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>new_camera_matrix Output new camera intrinsic matrix.
The function computes and returns the optimal new camera intrinsic matrix based on the free scaling parameter.
By varying this parameter, you may retrieve only sensible pixels alpha=0 , keep all the original
image pixels if there is valuable information in the corners alpha=1 , or get something in between.
When alpha&gt;0 , the undistorted result is likely to have some black pixels corresponding to
"virtual" pixels outside of the captured distorted image. The original camera intrinsic matrix, distortion
coefficients, the computed new camera intrinsic matrix, and newImageSize should be passed to
#initUndistortRectifyMap to produce the maps for #remap .</dd>
</dl>
</li>
</ul>
<a name="getValidDisparityROI-org.opencv.core.Rect-org.opencv.core.Rect-int-int-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>getValidDisparityROI</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;getValidDisparityROI(<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi1,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi2,
int&nbsp;minDisparity,
int&nbsp;numberOfDisparities,
int&nbsp;blockSize)</pre>
</li>
</ul>
<a name="initCameraMatrix2D-java.util.List-java.util.List-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>initCameraMatrix2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;initCameraMatrix2D(java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize)</pre>
<div class="block">Finds an initial camera intrinsic matrix from 3D-2D point correspondences.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points in the calibration pattern
coordinate space. In the old interface all the per-view vectors are concatenated. See
#calibrateCamera for details.</dd>
<dd><code>imagePoints</code> - Vector of vectors of the projections of the calibration pattern points. In the
old interface all the per-view vectors are concatenated.</dd>
<dd><code>imageSize</code> - Image size in pixels used to initialize the principal point.
Otherwise, \(f_x = f_y * \texttt{aspectRatio}\) .
The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
Currently, the function only supports planar calibration patterns, which are patterns where each
object point has z-coordinate =0.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="initCameraMatrix2D-java.util.List-java.util.List-org.opencv.core.Size-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>initCameraMatrix2D</h4>
<pre>public static&nbsp;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;initCameraMatrix2D(java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&gt;&nbsp;imagePoints,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
double&nbsp;aspectRatio)</pre>
<div class="block">Finds an initial camera intrinsic matrix from 3D-2D point correspondences.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points in the calibration pattern
coordinate space. In the old interface all the per-view vectors are concatenated. See
#calibrateCamera for details.</dd>
<dd><code>imagePoints</code> - Vector of vectors of the projections of the calibration pattern points. In the
old interface all the per-view vectors are concatenated.</dd>
<dd><code>imageSize</code> - Image size in pixels used to initialize the principal point.</dd>
<dd><code>aspectRatio</code> - If it is zero or negative, both \(f_x\) and \(f_y\) are estimated independently.
Otherwise, \(f_x = f_y * \texttt{aspectRatio}\) .
The function estimates and returns an initial camera intrinsic matrix for the camera calibration process.
Currently, the function only supports planar calibration patterns, which are patterns where each
object point has z-coordinate =0.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="initInverseRectificationMap-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>initInverseRectificationMap</h4>
<pre>public static&nbsp;void&nbsp;initInverseRectificationMap(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newCameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size,
int&nbsp;m1type,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map2)</pre>
<div class="block">Computes the projection and inverse-rectification transformation map. In essense, this is the inverse of
#initUndistortRectifyMap to accomodate stereo-rectification of projectors ('inverse-cameras') in projector-camera pairs.
The function computes the joint projection and inverse rectification transformation and represents the
result in the form of maps for #remap. The projected image looks like a distorted version of the original which,
once projected by a projector, should visually match the original. In case of a monocular camera, newCameraMatrix
is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a projector-camera pair,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
The projector is oriented differently in the coordinate space, according to R. In case of projector-camera pairs,
this helps align the projector (in the same manner as #initUndistortRectifyMap for the camera) to create a stereo-rectified pair. This
allows epipolar lines on both images to become horizontal and have the same y-coordinate (in case of a horizontally aligned projector-camera pair).
The function builds the maps for the inverse mapping algorithm that is used by #remap. That
is, for each pixel \((u, v)\) in the destination (projected and inverse-rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original digital image). The following process is applied:
\(
\begin{array}{l}
\text{newCameraMatrix}\\
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
\\\text{Undistortion}
\\\scriptsize{\textit{though equation shown is for radial undistortion, function implements cv::undistortPoints()}}\\
r^2 \leftarrow x^2 + y^2 \\
\theta \leftarrow \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}\\
x' \leftarrow \frac{x}{\theta} \\
y' \leftarrow \frac{y}{\theta} \\
\\\text{Rectification}\\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x'' \leftarrow X/W \\
y'' \leftarrow Y/W \\
\\\text{cameraMatrix}\\
map_x(u,v) \leftarrow x'' f_x + c_x \\
map_y(u,v) \leftarrow y'' f_y + c_y
\end{array}
\)
where \((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
are the distortion coefficients vector distCoeffs.
In case of a stereo-rectified projector-camera pair, this function is called for the projector while #initUndistortRectifyMap is called for the camera head.
This is done after #stereoRectify, which in turn is called after #stereoCalibrate. If the projector-camera pair
is not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For the projector and camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\(\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\)
where cameraMatrix can be chosen arbitrarily.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera matrix \(A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>R</code> - Optional rectification transformation in the object space (3x3 matrix). R1 or R2,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed.</dd>
<dd><code>newCameraMatrix</code> - New camera matrix \(A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\).</dd>
<dd><code>size</code> - Distorted image size.</dd>
<dd><code>m1type</code> - Type of the first output map. Can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps</dd>
<dd><code>map1</code> - The first output map for #remap.</dd>
<dd><code>map2</code> - The second output map for #remap.</dd>
</dl>
</li>
</ul>
<a name="initUndistortRectifyMap-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-int-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>initUndistortRectifyMap</h4>
<pre>public static&nbsp;void&nbsp;initUndistortRectifyMap(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newCameraMatrix,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;size,
int&nbsp;m1type,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;map2)</pre>
<div class="block">Computes the undistortion and rectification transformation map.
The function computes the joint undistortion and rectification transformation and represents the
result in the form of maps for #remap. The undistorted image looks like original, as if it is
captured with a camera using the camera matrix =newCameraMatrix and zero distortion. In case of a
monocular camera, newCameraMatrix is usually equal to cameraMatrix, or it can be computed by
#getOptimalNewCameraMatrix for a better control over scaling. In case of a stereo camera,
newCameraMatrix is normally set to P1 or P2 computed by #stereoRectify .
Also, this new camera is oriented differently in the coordinate space, according to R. That, for
example, helps to align two heads of a stereo camera so that the epipolar lines on both images
become horizontal and have the same y- coordinate (in case of a horizontally aligned stereo camera).
The function actually builds the maps for the inverse mapping algorithm that is used by #remap. That
is, for each pixel \((u, v)\) in the destination (corrected and rectified) image, the function
computes the corresponding coordinates in the source image (that is, in the original image from
camera). The following process is applied:
\(
\begin{array}{l}
x \leftarrow (u - {c'}_x)/{f'}_x \\
y \leftarrow (v - {c'}_y)/{f'}_y \\
{[X\,Y\,W]} ^T \leftarrow R^{-1}*[x \, y \, 1]^T \\
x' \leftarrow X/W \\
y' \leftarrow Y/W \\
r^2 \leftarrow x'^2 + y'^2 \\
x'' \leftarrow x' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ 2p_1 x' y' + p_2(r^2 + 2 x'^2) + s_1 r^2 + s_2 r^4\\
y'' \leftarrow y' \frac{1 + k_1 r^2 + k_2 r^4 + k_3 r^6}{1 + k_4 r^2 + k_5 r^4 + k_6 r^6}
+ p_1 (r^2 + 2 y'^2) + 2 p_2 x' y' + s_3 r^2 + s_4 r^4 \\
s\vecthree{x'''}{y'''}{1} =
\vecthreethree{R_{33}(\tau_x, \tau_y)}{0}{-R_{13}((\tau_x, \tau_y)}
{0}{R_{33}(\tau_x, \tau_y)}{-R_{23}(\tau_x, \tau_y)}
{0}{0}{1} R(\tau_x, \tau_y) \vecthree{x''}{y''}{1}\\
map_x(u,v) \leftarrow x''' f_x + c_x \\
map_y(u,v) \leftarrow y''' f_y + c_y
\end{array}
\)
where \((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
are the distortion coefficients.
In case of a stereo camera, this function is called twice: once for each camera head, after
#stereoRectify, which in its turn is called after #stereoCalibrate. But if the stereo camera
was not calibrated, it is still possible to compute the rectification transformations directly from
the fundamental matrix using #stereoRectifyUncalibrated. For each camera, the function computes
homography H as the rectification transformation in a pixel domain, not a rotation matrix R in 3D
space. R can be computed from H as
\(\texttt{R} = \texttt{cameraMatrix} ^{-1} \cdot \texttt{H} \cdot \texttt{cameraMatrix}\)
where cameraMatrix can be chosen arbitrarily.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix</code> - Input camera matrix \(A=\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>R</code> - Optional rectification transformation in the object space (3x3 matrix). R1 or R2 ,
computed by #stereoRectify can be passed here. If the matrix is empty, the identity transformation
is assumed. In cvInitUndistortMap R assumed to be an identity matrix.</dd>
<dd><code>newCameraMatrix</code> - New camera matrix \(A'=\vecthreethree{f_x'}{0}{c_x'}{0}{f_y'}{c_y'}{0}{0}{1}\).</dd>
<dd><code>size</code> - Undistorted image size.</dd>
<dd><code>m1type</code> - Type of the first output map that can be CV_32FC1, CV_32FC2 or CV_16SC2, see #convertMaps</dd>
<dd><code>map1</code> - The first output map.</dd>
<dd><code>map2</code> - The second output map.</dd>
</dl>
</li>
</ul>
<a name="matMulDeriv-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>matMulDeriv</h4>
<pre>public static&nbsp;void&nbsp;matMulDeriv(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;A,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;B,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dABdA,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dABdB)</pre>
<div class="block">Computes partial derivatives of the matrix product for each multiplied matrix.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>A</code> - First multiplied matrix.</dd>
<dd><code>B</code> - Second multiplied matrix.</dd>
<dd><code>dABdA</code> - First output derivative matrix d(A\*B)/dA of size
\(\texttt{A.rows*B.cols} \times {A.rows*A.cols}\) .</dd>
<dd><code>dABdB</code> - Second output derivative matrix d(A\*B)/dB of size
\(\texttt{A.rows*B.cols} \times {B.rows*B.cols}\) .
The function computes partial derivatives of the elements of the matrix product \(A*B\) with regard to
the elements of each of the two input matrices. The function is used to compute the Jacobian
matrices in #stereoCalibrate but can also be used in any other similar optimization function.</dd>
</dl>
</li>
</ul>
<a name="projectPoints-org.opencv.core.MatOfPoint3f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.MatOfPoint2f-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>projectPoints</h4>
<pre>public static&nbsp;void&nbsp;projectPoints(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints)</pre>
<div class="block">Projects 3D points to an image plane.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
1-channel or 1xN/Nx1 3-channel (or vector&lt;Point3f&gt; ), where N is the number of points in the view.</dd>
<dd><code>rvec</code> - The rotation vector (REF: Rodrigues) that, together with tvec, performs a change of
basis from world to camera coordinate system, see REF: calibrateCamera for details.</dd>
<dd><code>tvec</code> - The translation vector, see parameter description above.</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\) . If the vector is empty, the zero distortion coefficients are assumed.</dd>
<dd><code>imagePoints</code> - Output array of image points, 1xN/Nx1 2-channel, or
vector&lt;Point2f&gt; .
points with respect to components of the rotation vector, translation vector, focal lengths,
coordinates of the principal point and the distortion coefficients. In the old interface different
components of the jacobian are returned via different output parameters.
function assumes that the aspect ratio (\(f_x / f_y\)) is fixed and correspondingly adjusts the
jacobian matrix.
The function computes the 2D projections of 3D points to the image plane, given intrinsic and
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
derivatives of image points coordinates (as functions of all the input parameters) with respect to
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
optimization in REF: calibrateCamera, REF: solvePnP, and REF: stereoCalibrate. The function itself
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
parameters.
<b>Note:</b> By setting rvec = tvec = \([0, 0, 0]\), or by setting cameraMatrix to a 3x3 identity matrix,
or by passing zero distortion coefficients, one can get various useful partial cases of the
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.</dd>
</dl>
</li>
</ul>
<a name="projectPoints-org.opencv.core.MatOfPoint3f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>projectPoints</h4>
<pre>public static&nbsp;void&nbsp;projectPoints(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian)</pre>
<div class="block">Projects 3D points to an image plane.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
1-channel or 1xN/Nx1 3-channel (or vector&lt;Point3f&gt; ), where N is the number of points in the view.</dd>
<dd><code>rvec</code> - The rotation vector (REF: Rodrigues) that, together with tvec, performs a change of
basis from world to camera coordinate system, see REF: calibrateCamera for details.</dd>
<dd><code>tvec</code> - The translation vector, see parameter description above.</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\) . If the vector is empty, the zero distortion coefficients are assumed.</dd>
<dd><code>imagePoints</code> - Output array of image points, 1xN/Nx1 2-channel, or
vector&lt;Point2f&gt; .</dd>
<dd><code>jacobian</code> - Optional output 2Nx(10+&lt;numDistCoeffs&gt;) jacobian matrix of derivatives of image
points with respect to components of the rotation vector, translation vector, focal lengths,
coordinates of the principal point and the distortion coefficients. In the old interface different
components of the jacobian are returned via different output parameters.
function assumes that the aspect ratio (\(f_x / f_y\)) is fixed and correspondingly adjusts the
jacobian matrix.
The function computes the 2D projections of 3D points to the image plane, given intrinsic and
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
derivatives of image points coordinates (as functions of all the input parameters) with respect to
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
optimization in REF: calibrateCamera, REF: solvePnP, and REF: stereoCalibrate. The function itself
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
parameters.
<b>Note:</b> By setting rvec = tvec = \([0, 0, 0]\), or by setting cameraMatrix to a 3x3 identity matrix,
or by passing zero distortion coefficients, one can get various useful partial cases of the
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.</dd>
</dl>
</li>
</ul>
<a name="projectPoints-org.opencv.core.MatOfPoint3f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>projectPoints</h4>
<pre>public static&nbsp;void&nbsp;projectPoints(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian,
double&nbsp;aspectRatio)</pre>
<div class="block">Projects 3D points to an image plane.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points expressed wrt. the world coordinate frame. A 3xN/Nx3
1-channel or 1xN/Nx1 3-channel (or vector&lt;Point3f&gt; ), where N is the number of points in the view.</dd>
<dd><code>rvec</code> - The rotation vector (REF: Rodrigues) that, together with tvec, performs a change of
basis from world to camera coordinate system, see REF: calibrateCamera for details.</dd>
<dd><code>tvec</code> - The translation vector, see parameter description above.</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\) . If the vector is empty, the zero distortion coefficients are assumed.</dd>
<dd><code>imagePoints</code> - Output array of image points, 1xN/Nx1 2-channel, or
vector&lt;Point2f&gt; .</dd>
<dd><code>jacobian</code> - Optional output 2Nx(10+&lt;numDistCoeffs&gt;) jacobian matrix of derivatives of image
points with respect to components of the rotation vector, translation vector, focal lengths,
coordinates of the principal point and the distortion coefficients. In the old interface different
components of the jacobian are returned via different output parameters.</dd>
<dd><code>aspectRatio</code> - Optional "fixed aspect ratio" parameter. If the parameter is not 0, the
function assumes that the aspect ratio (\(f_x / f_y\)) is fixed and correspondingly adjusts the
jacobian matrix.
The function computes the 2D projections of 3D points to the image plane, given intrinsic and
extrinsic camera parameters. Optionally, the function computes Jacobians -matrices of partial
derivatives of image points coordinates (as functions of all the input parameters) with respect to
the particular parameters, intrinsic and/or extrinsic. The Jacobians are used during the global
optimization in REF: calibrateCamera, REF: solvePnP, and REF: stereoCalibrate. The function itself
can also be used to compute a re-projection error, given the current intrinsic and extrinsic
parameters.
<b>Note:</b> By setting rvec = tvec = \([0, 0, 0]\), or by setting cameraMatrix to a 3x3 identity matrix,
or by passing zero distortion coefficients, one can get various useful partial cases of the
function. This means, one can compute the distorted coordinates for a sparse set of points or apply
a perspective transformation (and also compute the derivatives) in the ideal zero-distortion setup.</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.
are feature points from cameras with same focal length and principal point.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;focal)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>focal</code> - Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>focal</code> - Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Point-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;focal,
<a href="../../../org/opencv/core/Point.html" title="class in org.opencv.core">Point</a>&nbsp;pp,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>focal</code> - Focal length of the camera. Note that this function assumes that points1 and points2
are feature points from cameras with same focal length and principal point.</dd>
<dd><code>pp</code> - principal point of the camera.</dd>
<dd><code>mask</code> - Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function differs from the one above that it computes camera intrinsic matrix from focal length and
principal point:
\(A =
\begin{bmatrix}
f &amp; 0 &amp; x_{pp} \\
0 &amp; f &amp; y_{pp} \\
0 &amp; 0 &amp; 1
\end{bmatrix}\)</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</pre>
<div class="block">Recovers the relative camera rotation and the translation from an estimated essential
matrix and the corresponding points in two images, using cheirality check. Returns the number of
inliers that pass the check.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function decomposes an essential matrix using REF: decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in CITE: Nister03.
This function can be used to process the output E and mask from REF: findEssentialMat. In this
scenario, points1 and points2 are the same input for #findEssentialMat :
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// cametra matrix with both focal lengths = 1, and principal point = (0, 0)
Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
Mat E, R, t, mask;
E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;distanceThresh)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1.</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>distanceThresh</code> - threshold distance which is used to filter out far away points (i.e. infinite
points).
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function differs from the one above that it outputs the triangulated 3D point that are used for
the cheirality check.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;distanceThresh,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1.</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>distanceThresh</code> - threshold distance which is used to filter out far away points (i.e. infinite
points).</dd>
<dd><code>mask</code> - Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function differs from the one above that it outputs the triangulated 3D point that are used for
the cheirality check.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
double&nbsp;distanceThresh,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;triangulatedPoints)</pre>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1.</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
description below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>distanceThresh</code> - threshold distance which is used to filter out far away points (i.e. infinite
points).</dd>
<dd><code>mask</code> - Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.</dd>
<dd><code>triangulatedPoints</code> - 3D points which were reconstructed by triangulation.
This function differs from the one above that it outputs the triangulated 3D point that are used for
the cheirality check.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<div class="block">Recovers the relative camera rotation and the translation from an estimated essential
matrix and the corresponding points in two images, using cheirality check. Returns the number of
inliers that pass the check.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>E</code> - The input essential matrix.</dd>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix</code> - Camera intrinsic matrix \(\cameramatrix{A}\) .
Note that this function assumes that points1 and points2 are feature points from cameras with the
same camera intrinsic matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>mask</code> - Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
This function decomposes an essential matrix using REF: decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in CITE: Nister03.
This function can be used to process the output E and mask from REF: findEssentialMat. In this
scenario, points1 and points2 are the same input for #findEssentialMat :
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// cametra matrix with both focal lengths = 1, and principal point = (0, 0)
Mat cameraMatrix = Mat::eye(3, 3, CV_64F);
Mat E, R, t, mask;
E = findEssentialMat(points1, points2, cameraMatrix, RANSAC, 0.999, 1.0, mask);
recoverPose(E, points1, points2, cameraMatrix, R, t, mask);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t)</pre>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs2</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>E</code> - The output essential matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
</li>
</ul>
This function decomposes an essential matrix using REF: decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in CITE: Nister03.
This function can be used to process the output E and mask from REF: findEssentialMat. In this
scenario, points1 and points2 are the same input for findEssentialMat.:
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
// Output: Essential matrix, relative rotation and relative translation.
Mat E, R, t, mask;
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method)</pre>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs2</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>E</code> - The output essential matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
</li>
</ul>
This function decomposes an essential matrix using REF: decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in CITE: Nister03.
This function can be used to process the output E and mask from REF: findEssentialMat. In this
scenario, points1 and points2 are the same input for findEssentialMat.:
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
// Output: Essential matrix, relative rotation and relative translation.
Mat E, R, t, mask;
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method,
double&nbsp;prob)</pre>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs2</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>E</code> - The output essential matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
</li>
</ul>
This function decomposes an essential matrix using REF: decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in CITE: Nister03.
This function can be used to process the output E and mask from REF: findEssentialMat. In this
scenario, points1 and points2 are the same input for findEssentialMat.:
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
// Output: Essential matrix, relative rotation and relative translation.
Mat E, R, t, mask;
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold)</pre>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs2</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>E</code> - The output essential matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
</li>
</ul>
This function decomposes an essential matrix using REF: decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in CITE: Nister03.
This function can be used to process the output E and mask from REF: findEssentialMat. In this
scenario, points1 and points2 are the same input for findEssentialMat.:
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
// Output: Essential matrix, relative rotation and relative translation.
Mat E, R, t, mask;
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="recoverPose-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>recoverPose</h4>
<pre>public static&nbsp;int&nbsp;recoverPose(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;t,
int&nbsp;method,
double&nbsp;prob,
double&nbsp;threshold,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mask)</pre>
<div class="block">Recovers the relative camera rotation and the translation from corresponding points in two images from two different cameras, using cheirality check. Returns the number of
inliers that pass the check.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of N 2D points from the first image. The point coordinates should be
floating-point (single or double precision).</dd>
<dd><code>points2</code> - Array of the second image points of the same size and format as points1 .</dd>
<dd><code>cameraMatrix1</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output camera matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs2</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>E</code> - The output essential matrix.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector, this matrix makes up a tuple
that performs a change of basis from the first camera's coordinate system to the second camera's
coordinate system. Note that, in general, t can not be used for this tuple, see the parameter
described below.</dd>
<dd><code>t</code> - Output translation vector. This vector is obtained by REF: decomposeEssentialMat and
therefore is only known up to scale, i.e. t is the direction of the translation vector and has unit
length.</dd>
<dd><code>method</code> - Method for computing an essential matrix.
<ul>
<li>
REF: RANSAC for the RANSAC algorithm.
</li>
<li>
REF: LMEDS for the LMedS algorithm.</dd>
<dd><code>prob</code> - Parameter used for the RANSAC or LMedS methods only. It specifies a desirable level of
confidence (probability) that the estimated matrix is correct.</dd>
<dd><code>threshold</code> - Parameter used for RANSAC. It is the maximum distance from a point to an epipolar
line in pixels, beyond which the point is considered an outlier and is not used for computing the
final fundamental matrix. It can be set to something like 1-3, depending on the accuracy of the
point localization, image resolution, and the image noise.</dd>
<dd><code>mask</code> - Input/output mask for inliers in points1 and points2. If it is not empty, then it marks
inliers in points1 and points2 for then given essential matrix E. Only these inliers will be used to
recover pose. In the output mask only inliers which pass the cheirality check.
</li>
</ul>
This function decomposes an essential matrix using REF: decomposeEssentialMat and then verifies
possible pose hypotheses by doing cheirality check. The cheirality check means that the
triangulated 3D points should have positive depth. Some details can be found in CITE: Nister03.
This function can be used to process the output E and mask from REF: findEssentialMat. In this
scenario, points1 and points2 are the same input for findEssentialMat.:
<code>
// Example. Estimation of fundamental matrix using the RANSAC algorithm
int point_count = 100;
vector&lt;Point2f&gt; points1(point_count);
vector&lt;Point2f&gt; points2(point_count);
// initialize the points here ...
for( int i = 0; i &lt; point_count; i++ )
{
points1[i] = ...;
points2[i] = ...;
}
// Input: camera calibration of both cameras, for example using intrinsic chessboard calibration.
Mat cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2;
// Output: Essential matrix, relative rotation and relative translation.
Mat E, R, t, mask;
recoverPose(points1, points2, cameraMatrix1, distCoeffs1, cameraMatrix2, distCoeffs2, E, R, t, mask);
</code></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="rectify3Collinear-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-double-org.opencv.core.Size-org.opencv.core.Rect-org.opencv.core.Rect-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>rectify3Collinear</h4>
<pre>public static&nbsp;float&nbsp;rectify3Collinear(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs3,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imgpt1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imgpt3,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R12,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T12,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R13,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T13,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P3,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImgSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi1,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;roi2,
int&nbsp;flags)</pre>
</li>
</ul>
<a name="reprojectImageTo3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>reprojectImageTo3D</h4>
<pre>public static&nbsp;void&nbsp;reprojectImageTo3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;_3dImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q)</pre>
<div class="block">Reprojects a disparity image to 3D space.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>disparity</code> - Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
fractional bits. If the disparity is 16-bit signed format, as computed by REF: StereoBM or
REF: StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
being used here.</dd>
<dd><code>_3dImage</code> - Output 3-channel floating-point image of the same size as disparity. Each element of
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
uses Q obtained by REF: stereoRectify, then the returned points are represented in the first
camera's rectified coordinate system.</dd>
<dd><code>Q</code> - \(4 \times 4\) perspective transformation matrix that can be obtained with
REF: stereoRectify.
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
to 3D points with a very large Z value (currently set to 10000).
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
computes:
\(\begin{bmatrix}
X \\
Y \\
Z \\
W
\end{bmatrix} = Q \begin{bmatrix}
x \\
y \\
\texttt{disparity} (x,y) \\
z
\end{bmatrix}.\)
SEE:
To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.</dd>
</dl>
</li>
</ul>
<a name="reprojectImageTo3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>reprojectImageTo3D</h4>
<pre>public static&nbsp;void&nbsp;reprojectImageTo3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;_3dImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
boolean&nbsp;handleMissingValues)</pre>
<div class="block">Reprojects a disparity image to 3D space.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>disparity</code> - Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
fractional bits. If the disparity is 16-bit signed format, as computed by REF: StereoBM or
REF: StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
being used here.</dd>
<dd><code>_3dImage</code> - Output 3-channel floating-point image of the same size as disparity. Each element of
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
uses Q obtained by REF: stereoRectify, then the returned points are represented in the first
camera's rectified coordinate system.</dd>
<dd><code>Q</code> - \(4 \times 4\) perspective transformation matrix that can be obtained with
REF: stereoRectify.</dd>
<dd><code>handleMissingValues</code> - Indicates, whether the function should handle missing values (i.e.
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
to 3D points with a very large Z value (currently set to 10000).
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
computes:
\(\begin{bmatrix}
X \\
Y \\
Z \\
W
\end{bmatrix} = Q \begin{bmatrix}
x \\
y \\
\texttt{disparity} (x,y) \\
z
\end{bmatrix}.\)
SEE:
To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.</dd>
</dl>
</li>
</ul>
<a name="reprojectImageTo3D-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>reprojectImageTo3D</h4>
<pre>public static&nbsp;void&nbsp;reprojectImageTo3D(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;_3dImage,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
boolean&nbsp;handleMissingValues,
int&nbsp;ddepth)</pre>
<div class="block">Reprojects a disparity image to 3D space.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>disparity</code> - Input single-channel 8-bit unsigned, 16-bit signed, 32-bit signed or 32-bit
floating-point disparity image. The values of 8-bit / 16-bit signed formats are assumed to have no
fractional bits. If the disparity is 16-bit signed format, as computed by REF: StereoBM or
REF: StereoSGBM and maybe other algorithms, it should be divided by 16 (and scaled to float) before
being used here.</dd>
<dd><code>_3dImage</code> - Output 3-channel floating-point image of the same size as disparity. Each element of
_3dImage(x,y) contains 3D coordinates of the point (x,y) computed from the disparity map. If one
uses Q obtained by REF: stereoRectify, then the returned points are represented in the first
camera's rectified coordinate system.</dd>
<dd><code>Q</code> - \(4 \times 4\) perspective transformation matrix that can be obtained with
REF: stereoRectify.</dd>
<dd><code>handleMissingValues</code> - Indicates, whether the function should handle missing values (i.e.
points where the disparity was not computed). If handleMissingValues=true, then pixels with the
minimal disparity that corresponds to the outliers (see StereoMatcher::compute ) are transformed
to 3D points with a very large Z value (currently set to 10000).</dd>
<dd><code>ddepth</code> - The optional output array depth. If it is -1, the output image will have CV_32F
depth. ddepth can also be set to CV_16S, CV_32S or CV_32F.
The function transforms a single-channel disparity map to a 3-channel image representing a 3D
surface. That is, for each pixel (x,y) and the corresponding disparity d=disparity(x,y) , it
computes:
\(\begin{bmatrix}
X \\
Y \\
Z \\
W
\end{bmatrix} = Q \begin{bmatrix}
x \\
y \\
\texttt{disparity} (x,y) \\
z
\end{bmatrix}.\)
SEE:
To reproject a sparse set of points {(x,y,d),...} to 3D space, use perspectiveTransform.</dd>
</dl>
</li>
</ul>
<a name="Rodrigues-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>Rodrigues</h4>
<pre>public static&nbsp;void&nbsp;Rodrigues(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst)</pre>
<div class="block">Converts a rotation matrix to a rotation vector or vice versa.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).</dd>
<dd><code>dst</code> - Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.
derivatives of the output array components with respect to the input array components.
\(\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta} ) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\)
Inverse transformation can be also done easily, since
\(\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\)
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
optimization procedures like REF: calibrateCamera, REF: stereoCalibrate, or REF: solvePnP .
<b>Note:</b> More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
can be found in:
<ul>
<li>
A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi CITE: Gallego2014ACF
</li>
</ul>
<b>Note:</b> Useful information on SE(3) and Lie Groups can be found in:
<ul>
<li>
A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco CITE: blanco2010tutorial
</li>
<li>
Lie Groups for 2D and 3D Transformation, Ethan Eade CITE: Eade17
</li>
<li>
A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan CITE: Sol2018AML
</li>
</ul></dd>
</dl>
</li>
</ul>
<a name="Rodrigues-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>Rodrigues</h4>
<pre>public static&nbsp;void&nbsp;Rodrigues(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;jacobian)</pre>
<div class="block">Converts a rotation matrix to a rotation vector or vice versa.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Input rotation vector (3x1 or 1x3) or rotation matrix (3x3).</dd>
<dd><code>dst</code> - Output rotation matrix (3x3) or rotation vector (3x1 or 1x3), respectively.</dd>
<dd><code>jacobian</code> - Optional output Jacobian matrix, 3x9 or 9x3, which is a matrix of partial
derivatives of the output array components with respect to the input array components.
\(\begin{array}{l} \theta \leftarrow norm(r) \\ r \leftarrow r/ \theta \\ R = \cos(\theta) I + (1- \cos{\theta} ) r r^T + \sin(\theta) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} \end{array}\)
Inverse transformation can be also done easily, since
\(\sin ( \theta ) \vecthreethree{0}{-r_z}{r_y}{r_z}{0}{-r_x}{-r_y}{r_x}{0} = \frac{R - R^T}{2}\)
A rotation vector is a convenient and most compact representation of a rotation matrix (since any
rotation matrix has just 3 degrees of freedom). The representation is used in the global 3D geometry
optimization procedures like REF: calibrateCamera, REF: stereoCalibrate, or REF: solvePnP .
<b>Note:</b> More information about the computation of the derivative of a 3D rotation matrix with respect to its exponential coordinate
can be found in:
<ul>
<li>
A Compact Formula for the Derivative of a 3-D Rotation in Exponential Coordinates, Guillermo Gallego, Anthony J. Yezzi CITE: Gallego2014ACF
</li>
</ul>
<b>Note:</b> Useful information on SE(3) and Lie Groups can be found in:
<ul>
<li>
A tutorial on SE(3) transformation parameterizations and on-manifold optimization, Jose-Luis Blanco CITE: blanco2010tutorial
</li>
<li>
Lie Groups for 2D and 3D Transformation, Ethan Eade CITE: Eade17
</li>
<li>
A micro Lie theory for state estimation in robotics, Joan Solà, Jérémie Deray, Dinesh Atchuthan CITE: Sol2018AML
</li>
</ul></dd>
</dl>
</li>
</ul>
<a name="RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>RQDecomp3x3</h4>
<pre>public static&nbsp;double[]&nbsp;RQDecomp3x3(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ)</pre>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - 3x3 input matrix.</dd>
<dd><code>mtxR</code> - Output 3x3 upper-triangular matrix.</dd>
<dd><code>mtxQ</code> - Output 3x3 orthogonal matrix.
The function computes a RQ decomposition using the given rotations. This function is used in
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see CITE: Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
are only one of the possible solutions.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>RQDecomp3x3</h4>
<pre>public static&nbsp;double[]&nbsp;RQDecomp3x3(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qx)</pre>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - 3x3 input matrix.</dd>
<dd><code>mtxR</code> - Output 3x3 upper-triangular matrix.</dd>
<dd><code>mtxQ</code> - Output 3x3 orthogonal matrix.</dd>
<dd><code>Qx</code> - Optional output 3x3 rotation matrix around x-axis.
The function computes a RQ decomposition using the given rotations. This function is used in
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see CITE: Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
are only one of the possible solutions.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>RQDecomp3x3</h4>
<pre>public static&nbsp;double[]&nbsp;RQDecomp3x3(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qx,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qy)</pre>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - 3x3 input matrix.</dd>
<dd><code>mtxR</code> - Output 3x3 upper-triangular matrix.</dd>
<dd><code>mtxQ</code> - Output 3x3 orthogonal matrix.</dd>
<dd><code>Qx</code> - Optional output 3x3 rotation matrix around x-axis.</dd>
<dd><code>Qy</code> - Optional output 3x3 rotation matrix around y-axis.
The function computes a RQ decomposition using the given rotations. This function is used in
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see CITE: Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
are only one of the possible solutions.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="RQDecomp3x3-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>RQDecomp3x3</h4>
<pre>public static&nbsp;double[]&nbsp;RQDecomp3x3(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxR,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;mtxQ,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qx,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qy,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Qz)</pre>
<div class="block">Computes an RQ decomposition of 3x3 matrices.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - 3x3 input matrix.</dd>
<dd><code>mtxR</code> - Output 3x3 upper-triangular matrix.</dd>
<dd><code>mtxQ</code> - Output 3x3 orthogonal matrix.</dd>
<dd><code>Qx</code> - Optional output 3x3 rotation matrix around x-axis.</dd>
<dd><code>Qy</code> - Optional output 3x3 rotation matrix around y-axis.</dd>
<dd><code>Qz</code> - Optional output 3x3 rotation matrix around z-axis.
The function computes a RQ decomposition using the given rotations. This function is used in
#decomposeProjectionMatrix to decompose the left 3x3 submatrix of a projection matrix into a camera
and a rotation matrix.
It optionally returns three rotation matrices, one for each axis, and the three Euler angles in
degrees (as the return value) that could be used in OpenGL. Note, there is always more than one
sequence of rotations about the three principal axes that results in the same orientation of an
object, e.g. see CITE: Slabaugh . Returned tree rotation matrices and corresponding three Euler angles
are only one of the possible solutions.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="sampsonDistance-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>sampsonDistance</h4>
<pre>public static&nbsp;double&nbsp;sampsonDistance(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pt1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;pt2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F)</pre>
<div class="block">Calculates the Sampson Distance between two points.
The function cv::sampsonDistance calculates and returns the first order approximation of the geometric error as:
\(
sd( \texttt{pt1} , \texttt{pt2} )=
\frac{(\texttt{pt2}^t \cdot \texttt{F} \cdot \texttt{pt1})^2}
{((\texttt{F} \cdot \texttt{pt1})(0))^2 +
((\texttt{F} \cdot \texttt{pt1})(1))^2 +
((\texttt{F}^t \cdot \texttt{pt2})(0))^2 +
((\texttt{F}^t \cdot \texttt{pt2})(1))^2}
\)
The fundamental matrix may be calculated using the #findFundamentalMat function. See CITE: HartleyZ00 11.4.3 for details.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>pt1</code> - first homogeneous 2d point</dd>
<dd><code>pt2</code> - second homogeneous 2d point</dd>
<dd><code>F</code> - fundamental matrix</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>The computed Sampson distance.</dd>
</dl>
</li>
</ul>
<a name="solveP3P-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solveP3P</h4>
<pre>public static&nbsp;int&nbsp;solveP3P(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
int&nbsp;flags)</pre>
<div class="block">Finds an object pose from 3 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, 3x3 1-channel or
1x3/3x1 3-channel. vector&lt;Point3f&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, 3x2 1-channel or 1x3/3x1 2-channel.
vector&lt;Point2f&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvecs</code> - Output rotation vectors (see REF: Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system. A P3P problem has up to 4 solutions.</dd>
<dd><code>tvecs</code> - Output translation vectors.</dd>
<dd><code>flags</code> - Method for solving a P3P problem:
<ul>
<li>
REF: SOLVEPNP_P3P Method is based on the paper of X.S. Gao, X.-R. Hou, J. Tang, H.-F. Chang
"Complete Solution Classification for the Perspective-Three-Point Problem" (CITE: gao2003complete).
</li>
<li>
REF: SOLVEPNP_AP3P Method is based on the paper of T. Ke and S. Roumeliotis.
"An Efficient Algebraic Solution to the Perspective-Three-Point Problem" (CITE: Ke17).
</li>
</ul>
The function estimates the object pose given 3 object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients.
<b>Note:</b>
The solutions are sorted by reprojection errors (lowest to highest).</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnP-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnP</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnP(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
coordinate frame to the camera coordinate frame, using different methods:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): need 4 input points to return a unique solution.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
More information about Perspective-n-Points is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<ul>
<li>
With REF: SOLVEPNP_SQPNP input points must be &gt;= 3
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnP-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnP</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnP(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
coordinate frame to the camera coordinate frame, using different methods:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): need 4 input points to return a unique solution.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
More information about Perspective-n-Points is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<ul>
<li>
With REF: SOLVEPNP_SQPNP input points must be &gt;= 3
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnP-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnP</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnP(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns the rotation and the translation vectors that transform a 3D point expressed in the object
coordinate frame to the camera coordinate frame, using different methods:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): need 4 input points to return a unique solution.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>flags</code> - Method for solving a PnP problem: see REF: calib3d_solvePnP_flags
More information about Perspective-n-Points is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<ul>
<li>
With REF: SOLVEPNP_SQPNP input points must be &gt;= 3
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPGeneric</h4>
<pre>public static&nbsp;int&nbsp;solvePnPGeneric(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a &lt;rotation vector, translation vector&gt;
couple), depending on the number of input points and the chosen method:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar. Returns 2 solutions.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
Only 1 solution is returned.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvecs</code> - Vector of output rotation vectors (see REF: Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvecs</code> - Vector of output translation vectors.
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
and useExtrinsicGuess is set to true.
and useExtrinsicGuess is set to true.
(\( \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \)) between the input image points
and the 3D object points projected with the estimated pose.
More information is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPGeneric</h4>
<pre>public static&nbsp;int&nbsp;solvePnPGeneric(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a &lt;rotation vector, translation vector&gt;
couple), depending on the number of input points and the chosen method:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar. Returns 2 solutions.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
Only 1 solution is returned.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvecs</code> - Vector of output rotation vectors (see REF: Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvecs</code> - Vector of output translation vectors.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
and useExtrinsicGuess is set to true.
and useExtrinsicGuess is set to true.
(\( \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \)) between the input image points
and the 3D object points projected with the estimated pose.
More information is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPGeneric</h4>
<pre>public static&nbsp;int&nbsp;solvePnPGeneric(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a &lt;rotation vector, translation vector&gt;
couple), depending on the number of input points and the chosen method:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar. Returns 2 solutions.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
Only 1 solution is returned.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvecs</code> - Vector of output rotation vectors (see REF: Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvecs</code> - Vector of output translation vectors.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>flags</code> - Method for solving a PnP problem: see REF: calib3d_solvePnP_flags
and useExtrinsicGuess is set to true.
and useExtrinsicGuess is set to true.
(\( \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \)) between the input image points
and the 3D object points projected with the estimated pose.
More information is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPGeneric</h4>
<pre>public static&nbsp;int&nbsp;solvePnPGeneric(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a &lt;rotation vector, translation vector&gt;
couple), depending on the number of input points and the chosen method:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar. Returns 2 solutions.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
Only 1 solution is returned.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvecs</code> - Vector of output rotation vectors (see REF: Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvecs</code> - Vector of output translation vectors.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>flags</code> - Method for solving a PnP problem: see REF: calib3d_solvePnP_flags</dd>
<dd><code>rvec</code> - Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is REF: SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.
and useExtrinsicGuess is set to true.
(\( \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \)) between the input image points
and the 3D object points projected with the estimated pose.
More information is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPGeneric</h4>
<pre>public static&nbsp;int&nbsp;solvePnPGeneric(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a &lt;rotation vector, translation vector&gt;
couple), depending on the number of input points and the chosen method:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar. Returns 2 solutions.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
Only 1 solution is returned.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvecs</code> - Vector of output rotation vectors (see REF: Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvecs</code> - Vector of output translation vectors.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>flags</code> - Method for solving a PnP problem: see REF: calib3d_solvePnP_flags</dd>
<dd><code>rvec</code> - Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is REF: SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.</dd>
<dd><code>tvec</code> - Translation vector used to initialize an iterative PnP refinement algorithm, when flag is REF: SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.
(\( \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \)) between the input image points
and the 3D object points projected with the estimated pose.
More information is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPGeneric-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-java.util.List-java.util.List-boolean-int-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPGeneric</h4>
<pre>public static&nbsp;int&nbsp;solvePnPGeneric(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;rvecs,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;tvecs,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;flags,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;reprojectionError)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences.
SEE: REF: calib3d_solvePnP
This function returns a list of all the possible solutions (a solution is a &lt;rotation vector, translation vector&gt;
couple), depending on the number of input points and the chosen method:
<ul>
<li>
P3P methods (REF: SOLVEPNP_P3P, REF: SOLVEPNP_AP3P): 3 or 4 input points. Number of returned solutions can be between 0 and 4 with 3 input points.
</li>
<li>
REF: SOLVEPNP_IPPE Input points must be &gt;= 4 and object points must be coplanar. Returns 2 solutions.
</li>
<li>
REF: SOLVEPNP_IPPE_SQUARE Special case suitable for marker pose estimation.
Number of input points must be 4 and 2 solutions are returned. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
<li>
for all the other flags, number of input points must be &gt;= 4 and object points can be in any configuration.
Only 1 solution is returned.
</li>
</ul></div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvecs</code> - Vector of output rotation vectors (see REF: Rodrigues ) that, together with tvecs, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvecs</code> - Vector of output translation vectors.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for #SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>flags</code> - Method for solving a PnP problem: see REF: calib3d_solvePnP_flags</dd>
<dd><code>rvec</code> - Rotation vector used to initialize an iterative PnP refinement algorithm, when flag is REF: SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.</dd>
<dd><code>tvec</code> - Translation vector used to initialize an iterative PnP refinement algorithm, when flag is REF: SOLVEPNP_ITERATIVE
and useExtrinsicGuess is set to true.</dd>
<dd><code>reprojectionError</code> - Optional vector of reprojection error, that is the RMS error
(\( \text{RMSE} = \sqrt{\frac{\sum_{i}^{N} \left ( \hat{y_i} - y_i \right )^2}{N}} \)) between the input image points
and the 3D object points projected with the estimated pose.
More information is described in REF: calib3d_solvePnP
<b>Note:</b>
<ul>
<li>
An example of how to use solvePnP for planar augmented reality can be found at
opencv_source_code/samples/python/plane_ar.py
</li>
<li>
If you are using Python:
<ul>
<li>
Numpy array slices won't work as input because solvePnP requires contiguous
arrays (enforced by the assertion using cv::Mat::checkVector() around line 55 of
modules/calib3d/src/solvepnp.cpp version 2.4.9)
</li>
<li>
The P3P algorithm requires image points to be in an array of shape (N,1,2) due
to its calling of #undistortPoints (around line 75 of modules/calib3d/src/solvepnp.cpp version 2.4.9)
which requires 2-channel information.
</li>
<li>
Thus, given some data D = np.array(...) where D.shape = (N,M), in order to use a subset of
it as, e.g., imagePoints, one must effectively copy it into a new array: imagePoints =
np.ascontiguousarray(D[:,:2]).reshape((N,1,2))
</li>
</ul>
<li>
The methods REF: SOLVEPNP_DLS and REF: SOLVEPNP_UPNP cannot be used as the current implementations are
unstable and sometimes give completely wrong results. If you pass one of these two
flags, REF: SOLVEPNP_EPNP method will be used instead.
</li>
<li>
The minimum number of points is 4 in the general case. In the case of REF: SOLVEPNP_P3P and REF: SOLVEPNP_AP3P
methods, it is required to use exactly 4 points (the first 3 points are used to estimate all the solutions
of the P3P problem, the last one is used to retain the best solution that minimizes the reprojection error).
</li>
<li>
With REF: SOLVEPNP_ITERATIVE method and <code>useExtrinsicGuess=true</code>, the minimum number of points is 3 (3 points
are sufficient to compute a pose but there are up to 4 solutions). The initial solution should be close to the
global solution to converge.
</li>
<li>
With REF: SOLVEPNP_IPPE input points must be &gt;= 4 and object points must be coplanar.
</li>
<li>
With REF: SOLVEPNP_IPPE_SQUARE this is a special case suitable for marker pose estimation.
Number of input points must be 4. Object points must be defined in the following order:
<ul>
<li>
point 0: [-squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 1: [ squareLength / 2, squareLength / 2, 0]
</li>
<li>
point 2: [ squareLength / 2, -squareLength / 2, 0]
</li>
<li>
point 3: [-squareLength / 2, -squareLength / 2, 0]
</li>
</ul>
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.
The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using REF: projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.
<b>Note:</b>
<ul>
<li>
An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
</li>
<li>
The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
<ul>
<li>
if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
</li>
<li>
if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
</li>
</ul>
<li>
The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for REF: SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.
The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using REF: projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.
<b>Note:</b>
<ul>
<li>
An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
</li>
<li>
The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
<ul>
<li>
if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
</li>
<li>
if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
</li>
</ul>
<li>
The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for REF: SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>iterationsCount</code> - Number of iterations.
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.
The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using REF: projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.
<b>Note:</b>
<ul>
<li>
An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
</li>
<li>
The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
<ul>
<li>
if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
</li>
<li>
if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
</li>
</ul>
<li>
The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for REF: SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>iterationsCount</code> - Number of iterations.</dd>
<dd><code>reprojectionError</code> - Inlier threshold value used by the RANSAC procedure. The parameter value
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.
The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using REF: projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.
<b>Note:</b>
<ul>
<li>
An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
</li>
<li>
The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
<ul>
<li>
if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
</li>
<li>
if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
</li>
</ul>
<li>
The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError,
double&nbsp;confidence)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for REF: SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>iterationsCount</code> - Number of iterations.</dd>
<dd><code>reprojectionError</code> - Inlier threshold value used by the RANSAC procedure. The parameter value
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.</dd>
<dd><code>confidence</code> - The probability that the algorithm produces a useful result.
The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using REF: projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.
<b>Note:</b>
<ul>
<li>
An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
</li>
<li>
The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
<ul>
<li>
if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
</li>
<li>
if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
</li>
</ul>
<li>
The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-double-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError,
double&nbsp;confidence,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for REF: SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>iterationsCount</code> - Number of iterations.</dd>
<dd><code>reprojectionError</code> - Inlier threshold value used by the RANSAC procedure. The parameter value
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.</dd>
<dd><code>confidence</code> - The probability that the algorithm produces a useful result.</dd>
<dd><code>inliers</code> - Output vector that contains indices of inliers in objectPoints and imagePoints .
The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using REF: projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.
<b>Note:</b>
<ul>
<li>
An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
</li>
<li>
The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
<ul>
<li>
if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
</li>
<li>
if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
</li>
</ul>
<li>
The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-boolean-int-float-double-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
boolean&nbsp;useExtrinsicGuess,
int&nbsp;iterationsCount,
float&nbsp;reprojectionError,
double&nbsp;confidence,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
int&nbsp;flags)</pre>
<div class="block">Finds an object pose from 3D-2D point correspondences using the RANSAC scheme.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or
1xN/Nx1 3-channel, where N is the number of points. vector&lt;Point3d&gt; can be also passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can be also passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system.</dd>
<dd><code>tvec</code> - Output translation vector.</dd>
<dd><code>useExtrinsicGuess</code> - Parameter used for REF: SOLVEPNP_ITERATIVE. If true (1), the function uses
the provided rvec and tvec values as initial approximations of the rotation and translation
vectors, respectively, and further optimizes them.</dd>
<dd><code>iterationsCount</code> - Number of iterations.</dd>
<dd><code>reprojectionError</code> - Inlier threshold value used by the RANSAC procedure. The parameter value
is the maximum allowed distance between the observed and computed point projections to consider it
an inlier.</dd>
<dd><code>confidence</code> - The probability that the algorithm produces a useful result.</dd>
<dd><code>inliers</code> - Output vector that contains indices of inliers in objectPoints and imagePoints .</dd>
<dd><code>flags</code> - Method for solving a PnP problem (see REF: solvePnP ).
The function estimates an object pose given a set of object points, their corresponding image
projections, as well as the camera intrinsic matrix and the distortion coefficients. This function finds such
a pose that minimizes reprojection error, that is, the sum of squared distances between the observed
projections imagePoints and the projected (using REF: projectPoints ) objectPoints. The use of RANSAC
makes the function resistant to outliers.
<b>Note:</b>
<ul>
<li>
An example of how to use solvePNPRansac for object detection can be found at
opencv_source_code/samples/cpp/tutorial_code/calib3d/real_time_pose_estimation/
</li>
<li>
The default method used to estimate the camera pose for the Minimal Sample Sets step
is #SOLVEPNP_EPNP. Exceptions are:
<ul>
<li>
if you choose #SOLVEPNP_P3P or #SOLVEPNP_AP3P, these methods will be used.
</li>
<li>
if the number of input points is equal to 4, #SOLVEPNP_P3P is used.
</li>
</ul>
<li>
The method used to estimate the camera pose using all the inliers is defined by the
flags parameters unless it is equal to #SOLVEPNP_P3P or #SOLVEPNP_AP3P. In this case,
the method #SOLVEPNP_EPNP will be used instead.
</li>
</ul></dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers)</pre>
</li>
</ul>
<a name="solvePnPRansac-org.opencv.core.MatOfPoint3f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.MatOfDouble-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.calib3d.UsacParams-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRansac</h4>
<pre>public static&nbsp;boolean&nbsp;solvePnPRansac(<a href="../../../org/opencv/core/MatOfPoint3f.html" title="class in org.opencv.core">MatOfPoint3f</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/MatOfDouble.html" title="class in org.opencv.core">MatOfDouble</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;inliers,
<a href="../../../org/opencv/calib3d/UsacParams.html" title="class in org.opencv.calib3d">UsacParams</a>&nbsp;params)</pre>
</li>
</ul>
<a name="solvePnPRefineLM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRefineLM</h4>
<pre>public static&nbsp;void&nbsp;solvePnPRefineLM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</pre>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector&lt;Point3d&gt; can also be passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can also be passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Input/Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.</dd>
<dd><code>tvec</code> - Input/Output translation vector. Input values are used as an initial solution.
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, according
to a Levenberg-Marquardt iterative minimization CITE: Madsen04 CITE: Eade13 process.</dd>
</dl>
</li>
</ul>
<a name="solvePnPRefineLM-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRefineLM</h4>
<pre>public static&nbsp;void&nbsp;solvePnPRefineLM(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector&lt;Point3d&gt; can also be passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can also be passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Input/Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.</dd>
<dd><code>tvec</code> - Input/Output translation vector. Input values are used as an initial solution.</dd>
<dd><code>criteria</code> - Criteria when to stop the Levenberg-Marquard iterative algorithm.
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, according
to a Levenberg-Marquardt iterative minimization CITE: Madsen04 CITE: Eade13 process.</dd>
</dl>
</li>
</ul>
<a name="solvePnPRefineVVS-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRefineVVS</h4>
<pre>public static&nbsp;void&nbsp;solvePnPRefineVVS(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec)</pre>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector&lt;Point3d&gt; can also be passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can also be passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Input/Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.</dd>
<dd><code>tvec</code> - Input/Output translation vector. Input values are used as an initial solution.
gain in the Damped Gauss-Newton formulation.
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
virtual visual servoing (VVS) CITE: Chaumette06 CITE: Marchand16 scheme.</dd>
</dl>
</li>
</ul>
<a name="solvePnPRefineVVS-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRefineVVS</h4>
<pre>public static&nbsp;void&nbsp;solvePnPRefineVVS(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector&lt;Point3d&gt; can also be passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can also be passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Input/Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.</dd>
<dd><code>tvec</code> - Input/Output translation vector. Input values are used as an initial solution.</dd>
<dd><code>criteria</code> - Criteria when to stop the Levenberg-Marquard iterative algorithm.
gain in the Damped Gauss-Newton formulation.
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
virtual visual servoing (VVS) CITE: Chaumette06 CITE: Marchand16 scheme.</dd>
</dl>
</li>
</ul>
<a name="solvePnPRefineVVS-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>solvePnPRefineVVS</h4>
<pre>public static&nbsp;void&nbsp;solvePnPRefineVVS(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;objectPoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;imagePoints,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;rvec,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;tvec,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria,
double&nbsp;VVSlambda)</pre>
<div class="block">Refine a pose (the translation and the rotation that transform a 3D point expressed in the object coordinate frame
to the camera coordinate frame) from a 3D-2D point correspondences and starting from an initial solution.
SEE: REF: calib3d_solvePnP</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Array of object points in the object coordinate space, Nx3 1-channel or 1xN/Nx1 3-channel,
where N is the number of points. vector&lt;Point3d&gt; can also be passed here.</dd>
<dd><code>imagePoints</code> - Array of corresponding image points, Nx2 1-channel or 1xN/Nx1 2-channel,
where N is the number of points. vector&lt;Point2d&gt; can also be passed here.</dd>
<dd><code>cameraMatrix</code> - Input camera intrinsic matrix \(\cameramatrix{A}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\(\distcoeffs\). If the vector is NULL/empty, the zero distortion coefficients are
assumed.</dd>
<dd><code>rvec</code> - Input/Output rotation vector (see REF: Rodrigues ) that, together with tvec, brings points from
the model coordinate system to the camera coordinate system. Input values are used as an initial solution.</dd>
<dd><code>tvec</code> - Input/Output translation vector. Input values are used as an initial solution.</dd>
<dd><code>criteria</code> - Criteria when to stop the Levenberg-Marquard iterative algorithm.</dd>
<dd><code>VVSlambda</code> - Gain for the virtual visual servoing control law, equivalent to the \(\alpha\)
gain in the Damped Gauss-Newton formulation.
The function refines the object pose given at least 3 object points, their corresponding image
projections, an initial solution for the rotation and translation vector,
as well as the camera intrinsic matrix and the distortion coefficients.
The function minimizes the projection error with respect to the rotation and the translation vectors, using a
virtual visual servoing (VVS) CITE: Chaumette06 CITE: Marchand16 scheme.</dd>
</dl>
</li>
</ul>
<a name="stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoCalibrate</h4>
<pre>public static&nbsp;double&nbsp;stereoCalibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F)</pre>
</li>
</ul>
<a name="stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoCalibrate</h4>
<pre>public static&nbsp;double&nbsp;stereoCalibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
int&nbsp;flags)</pre>
</li>
</ul>
<a name="stereoCalibrate-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoCalibrate</h4>
<pre>public static&nbsp;double&nbsp;stereoCalibrate(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
</li>
</ul>
<a name="stereoCalibrateExtended-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoCalibrateExtended</h4>
<pre>public static&nbsp;double&nbsp;stereoCalibrateExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors)</pre>
<div class="block">Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points. The same structure as
in REF: calibrateCamera. For each pattern view, both cameras need to see the same object
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
be equal for each i.</dd>
<dd><code>imagePoints1</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the first camera. The same structure as in REF: calibrateCamera.</dd>
<dd><code>imagePoints2</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the second camera. The same structure as in REF: calibrateCamera.</dd>
<dd><code>cameraMatrix1</code> - Input/output camera intrinsic matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output second camera intrinsic matrix for the second camera. See description for
cameraMatrix1.</dd>
<dd><code>distCoeffs2</code> - Input/output lens distortion coefficients for the second camera. See
description for distCoeffs1.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the camera intrinsic matrices.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector T, this matrix brings
points given in the first camera's coordinate system to points in the second camera's
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
from the first camera's coordinate system to the second camera's coordinate system. Due to its
duality, this tuple is equivalent to the position of the first camera with respect to the
second camera coordinate system.</dd>
<dd><code>T</code> - Output translation vector, see description above.</dd>
<dd><code>E</code> - Output essential matrix.</dd>
<dd><code>F</code> - Output fundamental matrix.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.
<ul>
<li>
REF: CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
matrices are estimated.
</li>
<li>
REF: CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
</li>
<li>
REF: CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
</li>
<li>
REF: CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
</li>
<li>
REF: CALIB_FIX_FOCAL_LENGTH Fix \(f^{(j)}_x\) and \(f^{(j)}_y\) .
</li>
<li>
REF: CALIB_FIX_ASPECT_RATIO Optimize \(f^{(j)}_y\) . Fix the ratio \(f^{(j)}_x/f^{(j)}_y\)
.
</li>
<li>
REF: CALIB_SAME_FOCAL_LENGTH Enforce \(f^{(0)}_x=f^{(1)}_x\) and \(f^{(0)}_y=f^{(1)}_y\) .
</li>
<li>
REF: CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
zeros and fix there.
</li>
<li>
REF: CALIB_FIX_K1,..., REF: CALIB_FIX_K6 Do not change the corresponding radial
distortion coefficient during the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
</ul>
The function estimates the transformation between two cameras making a stereo pair. If one computes
the poses of an object relative to the first camera and to the second camera,
( \(R_1\),\(T_1\) ) and (\(R_2\),\(T_2\)), respectively, for a stereo camera where the
relative position and orientation between the two cameras are fixed, then those poses definitely
relate to each other. This means, if the relative position and orientation (\(R\),\(T\)) of the
two cameras is known, it is possible to compute (\(R_2\),\(T_2\)) when (\(R_1\),\(T_1\)) is
given. This is what the described function does. It computes (\(R\),\(T\)) such that:
\(R_2=R R_1\)
\(T_2=R T_1 + T.\)
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
coordinate system when given the point's coordinate representation in the first camera's coordinate
system:
\(\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2 \\
1
\end{bmatrix} = \begin{bmatrix}
R &amp; T \\
0 &amp; 1
\end{bmatrix} \begin{bmatrix}
X_1 \\
Y_1 \\
Z_1 \\
1
\end{bmatrix}.\)
Optionally, it computes the essential matrix E:
\(E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\)
where \(T_i\) are components of the translation vector \(T\) : \(T=[T_0, T_1, T_2]^T\) .
And the function can also compute the fundamental matrix F:
\(F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\)
Besides the stereo-related information, the function can also perform a full calibration of each of
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
#calibrateCamera ), you are recommended to do so and then pass REF: CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
REF: CALIB_SAME_FOCAL_LENGTH and REF: CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
points in all the available views from both cameras. The function returns the final value of the
re-projection error.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="stereoCalibrateExtended-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoCalibrateExtended</h4>
<pre>public static&nbsp;double&nbsp;stereoCalibrateExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags)</pre>
<div class="block">Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points. The same structure as
in REF: calibrateCamera. For each pattern view, both cameras need to see the same object
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
be equal for each i.</dd>
<dd><code>imagePoints1</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the first camera. The same structure as in REF: calibrateCamera.</dd>
<dd><code>imagePoints2</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the second camera. The same structure as in REF: calibrateCamera.</dd>
<dd><code>cameraMatrix1</code> - Input/output camera intrinsic matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output second camera intrinsic matrix for the second camera. See description for
cameraMatrix1.</dd>
<dd><code>distCoeffs2</code> - Input/output lens distortion coefficients for the second camera. See
description for distCoeffs1.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the camera intrinsic matrices.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector T, this matrix brings
points given in the first camera's coordinate system to points in the second camera's
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
from the first camera's coordinate system to the second camera's coordinate system. Due to its
duality, this tuple is equivalent to the position of the first camera with respect to the
second camera coordinate system.</dd>
<dd><code>T</code> - Output translation vector, see description above.</dd>
<dd><code>E</code> - Output essential matrix.</dd>
<dd><code>F</code> - Output fundamental matrix.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
matrices are estimated.
</li>
<li>
REF: CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
</li>
<li>
REF: CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
</li>
<li>
REF: CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
</li>
<li>
REF: CALIB_FIX_FOCAL_LENGTH Fix \(f^{(j)}_x\) and \(f^{(j)}_y\) .
</li>
<li>
REF: CALIB_FIX_ASPECT_RATIO Optimize \(f^{(j)}_y\) . Fix the ratio \(f^{(j)}_x/f^{(j)}_y\)
.
</li>
<li>
REF: CALIB_SAME_FOCAL_LENGTH Enforce \(f^{(0)}_x=f^{(1)}_x\) and \(f^{(0)}_y=f^{(1)}_y\) .
</li>
<li>
REF: CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
zeros and fix there.
</li>
<li>
REF: CALIB_FIX_K1,..., REF: CALIB_FIX_K6 Do not change the corresponding radial
distortion coefficient during the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
</ul>
The function estimates the transformation between two cameras making a stereo pair. If one computes
the poses of an object relative to the first camera and to the second camera,
( \(R_1\),\(T_1\) ) and (\(R_2\),\(T_2\)), respectively, for a stereo camera where the
relative position and orientation between the two cameras are fixed, then those poses definitely
relate to each other. This means, if the relative position and orientation (\(R\),\(T\)) of the
two cameras is known, it is possible to compute (\(R_2\),\(T_2\)) when (\(R_1\),\(T_1\)) is
given. This is what the described function does. It computes (\(R\),\(T\)) such that:
\(R_2=R R_1\)
\(T_2=R T_1 + T.\)
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
coordinate system when given the point's coordinate representation in the first camera's coordinate
system:
\(\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2 \\
1
\end{bmatrix} = \begin{bmatrix}
R &amp; T \\
0 &amp; 1
\end{bmatrix} \begin{bmatrix}
X_1 \\
Y_1 \\
Z_1 \\
1
\end{bmatrix}.\)
Optionally, it computes the essential matrix E:
\(E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\)
where \(T_i\) are components of the translation vector \(T\) : \(T=[T_0, T_1, T_2]^T\) .
And the function can also compute the fundamental matrix F:
\(F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\)
Besides the stereo-related information, the function can also perform a full calibration of each of
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
#calibrateCamera ), you are recommended to do so and then pass REF: CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
REF: CALIB_SAME_FOCAL_LENGTH and REF: CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
points in all the available views from both cameras. The function returns the final value of the
re-projection error.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="stereoCalibrateExtended-java.util.List-java.util.List-java.util.List-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoCalibrateExtended</h4>
<pre>public static&nbsp;double&nbsp;stereoCalibrateExtended(java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;objectPoints,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints1,
java.util.List&lt;<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&gt;&nbsp;imagePoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;E,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;perViewErrors,
int&nbsp;flags,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block">Calibrates a stereo camera set up. This function finds the intrinsic parameters
for each of the two cameras and the extrinsic parameters between the two cameras.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>objectPoints</code> - Vector of vectors of the calibration pattern points. The same structure as
in REF: calibrateCamera. For each pattern view, both cameras need to see the same object
points. Therefore, objectPoints.size(), imagePoints1.size(), and imagePoints2.size() need to be
equal as well as objectPoints[i].size(), imagePoints1[i].size(), and imagePoints2[i].size() need to
be equal for each i.</dd>
<dd><code>imagePoints1</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the first camera. The same structure as in REF: calibrateCamera.</dd>
<dd><code>imagePoints2</code> - Vector of vectors of the projections of the calibration pattern points,
observed by the second camera. The same structure as in REF: calibrateCamera.</dd>
<dd><code>cameraMatrix1</code> - Input/output camera intrinsic matrix for the first camera, the same as in
REF: calibrateCamera. Furthermore, for the stereo case, additional flags may be used, see below.</dd>
<dd><code>distCoeffs1</code> - Input/output vector of distortion coefficients, the same as in
REF: calibrateCamera.</dd>
<dd><code>cameraMatrix2</code> - Input/output second camera intrinsic matrix for the second camera. See description for
cameraMatrix1.</dd>
<dd><code>distCoeffs2</code> - Input/output lens distortion coefficients for the second camera. See
description for distCoeffs1.</dd>
<dd><code>imageSize</code> - Size of the image used only to initialize the camera intrinsic matrices.</dd>
<dd><code>R</code> - Output rotation matrix. Together with the translation vector T, this matrix brings
points given in the first camera's coordinate system to points in the second camera's
coordinate system. In more technical terms, the tuple of R and T performs a change of basis
from the first camera's coordinate system to the second camera's coordinate system. Due to its
duality, this tuple is equivalent to the position of the first camera with respect to the
second camera coordinate system.</dd>
<dd><code>T</code> - Output translation vector, see description above.</dd>
<dd><code>E</code> - Output essential matrix.</dd>
<dd><code>F</code> - Output fundamental matrix.</dd>
<dd><code>perViewErrors</code> - Output vector of the RMS re-projection error estimated for each pattern view.</dd>
<dd><code>flags</code> - Different flags that may be zero or a combination of the following values:
<ul>
<li>
REF: CALIB_FIX_INTRINSIC Fix cameraMatrix? and distCoeffs? so that only R, T, E, and F
matrices are estimated.
</li>
<li>
REF: CALIB_USE_INTRINSIC_GUESS Optimize some or all of the intrinsic parameters
according to the specified flags. Initial values are provided by the user.
</li>
<li>
REF: CALIB_USE_EXTRINSIC_GUESS R and T contain valid initial values that are optimized further.
Otherwise R and T are initialized to the median value of the pattern views (each dimension separately).
</li>
<li>
REF: CALIB_FIX_PRINCIPAL_POINT Fix the principal points during the optimization.
</li>
<li>
REF: CALIB_FIX_FOCAL_LENGTH Fix \(f^{(j)}_x\) and \(f^{(j)}_y\) .
</li>
<li>
REF: CALIB_FIX_ASPECT_RATIO Optimize \(f^{(j)}_y\) . Fix the ratio \(f^{(j)}_x/f^{(j)}_y\)
.
</li>
<li>
REF: CALIB_SAME_FOCAL_LENGTH Enforce \(f^{(0)}_x=f^{(1)}_x\) and \(f^{(0)}_y=f^{(1)}_y\) .
</li>
<li>
REF: CALIB_ZERO_TANGENT_DIST Set tangential distortion coefficients for each camera to
zeros and fix there.
</li>
<li>
REF: CALIB_FIX_K1,..., REF: CALIB_FIX_K6 Do not change the corresponding radial
distortion coefficient during the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set,
the coefficient from the supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_RATIONAL_MODEL Enable coefficients k4, k5, and k6. To provide the backward
compatibility, this extra flag should be explicitly specified to make the calibration
function use the rational model and return 8 coefficients. If the flag is not set, the
function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_THIN_PRISM_MODEL Coefficients s1, s2, s3 and s4 are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the thin prism model and return 12 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_FIX_S1_S2_S3_S4 The thin prism distortion coefficients are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.
</li>
<li>
REF: CALIB_TILTED_MODEL Coefficients tauX and tauY are enabled. To provide the
backward compatibility, this extra flag should be explicitly specified to make the
calibration function use the tilted sensor model and return 14 coefficients. If the flag is not
set, the function computes and returns only 5 distortion coefficients.
</li>
<li>
REF: CALIB_FIX_TAUX_TAUY The coefficients of the tilted sensor model are not changed during
the optimization. If REF: CALIB_USE_INTRINSIC_GUESS is set, the coefficient from the
supplied distCoeffs matrix is used. Otherwise, it is set to 0.</dd>
<dd><code>criteria</code> - Termination criteria for the iterative optimization algorithm.
</li>
</ul>
The function estimates the transformation between two cameras making a stereo pair. If one computes
the poses of an object relative to the first camera and to the second camera,
( \(R_1\),\(T_1\) ) and (\(R_2\),\(T_2\)), respectively, for a stereo camera where the
relative position and orientation between the two cameras are fixed, then those poses definitely
relate to each other. This means, if the relative position and orientation (\(R\),\(T\)) of the
two cameras is known, it is possible to compute (\(R_2\),\(T_2\)) when (\(R_1\),\(T_1\)) is
given. This is what the described function does. It computes (\(R\),\(T\)) such that:
\(R_2=R R_1\)
\(T_2=R T_1 + T.\)
Therefore, one can compute the coordinate representation of a 3D point for the second camera's
coordinate system when given the point's coordinate representation in the first camera's coordinate
system:
\(\begin{bmatrix}
X_2 \\
Y_2 \\
Z_2 \\
1
\end{bmatrix} = \begin{bmatrix}
R &amp; T \\
0 &amp; 1
\end{bmatrix} \begin{bmatrix}
X_1 \\
Y_1 \\
Z_1 \\
1
\end{bmatrix}.\)
Optionally, it computes the essential matrix E:
\(E= \vecthreethree{0}{-T_2}{T_1}{T_2}{0}{-T_0}{-T_1}{T_0}{0} R\)
where \(T_i\) are components of the translation vector \(T\) : \(T=[T_0, T_1, T_2]^T\) .
And the function can also compute the fundamental matrix F:
\(F = cameraMatrix2^{-T}\cdot E \cdot cameraMatrix1^{-1}\)
Besides the stereo-related information, the function can also perform a full calibration of each of
the two cameras. However, due to the high dimensionality of the parameter space and noise in the
input data, the function can diverge from the correct solution. If the intrinsic parameters can be
estimated with high accuracy for each of the cameras individually (for example, using
#calibrateCamera ), you are recommended to do so and then pass REF: CALIB_FIX_INTRINSIC flag to the
function along with the computed intrinsic parameters. Otherwise, if all the parameters are
estimated at once, it makes sense to restrict some parameters, for example, pass
REF: CALIB_SAME_FOCAL_LENGTH and REF: CALIB_ZERO_TANGENT_DIST flags, which is usually a
reasonable assumption.
Similarly to #calibrateCamera, the function minimizes the total re-projection error for all the
points in all the available views from both cameras. The function returns the final value of the
re-projection error.</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q)</pre>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix1</code> - First camera intrinsic matrix.</dd>
<dd><code>distCoeffs1</code> - First camera distortion parameters.</dd>
<dd><code>cameraMatrix2</code> - Second camera intrinsic matrix.</dd>
<dd><code>distCoeffs2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>T</code> - Translation vector from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
<ul>
<li>
<b>Horizontal stereo</b>: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx_1 &amp; 0 \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx_2 &amp; T_x*f \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix} ,\)
where \(T_x\) is a horizontal shift between the cameras and \(cx_1=cx_2\) if
REF: CALIB_ZERO_DISPARITY is set.
<ul>
<li>
<b>Vertical stereo</b>: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_1 &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_2 &amp; T_y*f \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix},\)
where \(T_y\) is a vertical shift between the cameras and \(cy_1=cy_2\) if
REF: CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
![image](pics/stereo_undistort.jpg)</dd>
</dl>
</li>
</ul>
<a name="stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags)</pre>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix1</code> - First camera intrinsic matrix.</dd>
<dd><code>distCoeffs1</code> - First camera distortion parameters.</dd>
<dd><code>cameraMatrix2</code> - Second camera intrinsic matrix.</dd>
<dd><code>distCoeffs2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>T</code> - Translation vector from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
<ul>
<li>
<b>Horizontal stereo</b>: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx_1 &amp; 0 \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx_2 &amp; T_x*f \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix} ,\)
where \(T_x\) is a horizontal shift between the cameras and \(cx_1=cx_2\) if
REF: CALIB_ZERO_DISPARITY is set.
<ul>
<li>
<b>Vertical stereo</b>: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_1 &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_2 &amp; T_y*f \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix},\)
where \(T_y\) is a vertical shift between the cameras and \(cy_1=cy_2\) if
REF: CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
![image](pics/stereo_undistort.jpg)</dd>
</dl>
</li>
</ul>
<a name="stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha)</pre>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix1</code> - First camera intrinsic matrix.</dd>
<dd><code>distCoeffs1</code> - First camera distortion parameters.</dd>
<dd><code>cameraMatrix2</code> - Second camera intrinsic matrix.</dd>
<dd><code>distCoeffs2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>T</code> - Translation vector from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.</dd>
<dd><code>alpha</code> - Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
<ul>
<li>
<b>Horizontal stereo</b>: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx_1 &amp; 0 \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx_2 &amp; T_x*f \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix} ,\)
where \(T_x\) is a horizontal shift between the cameras and \(cx_1=cx_2\) if
REF: CALIB_ZERO_DISPARITY is set.
<ul>
<li>
<b>Vertical stereo</b>: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_1 &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_2 &amp; T_y*f \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix},\)
where \(T_y\) is a vertical shift between the cameras and \(cy_1=cy_2\) if
REF: CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
![image](pics/stereo_undistort.jpg)</dd>
</dl>
</li>
</ul>
<a name="stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-org.opencv.core.Size-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize)</pre>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix1</code> - First camera intrinsic matrix.</dd>
<dd><code>distCoeffs1</code> - First camera distortion parameters.</dd>
<dd><code>cameraMatrix2</code> - Second camera intrinsic matrix.</dd>
<dd><code>distCoeffs2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>T</code> - Translation vector from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.</dd>
<dd><code>alpha</code> - Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.</dd>
<dd><code>newImageSize</code> - New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
<ul>
<li>
<b>Horizontal stereo</b>: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx_1 &amp; 0 \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx_2 &amp; T_x*f \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix} ,\)
where \(T_x\) is a horizontal shift between the cameras and \(cx_1=cx_2\) if
REF: CALIB_ZERO_DISPARITY is set.
<ul>
<li>
<b>Vertical stereo</b>: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_1 &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_2 &amp; T_y*f \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix},\)
where \(T_y\) is a vertical shift between the cameras and \(cy_1=cy_2\) if
REF: CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
![image](pics/stereo_undistort.jpg)</dd>
</dl>
</li>
</ul>
<a name="stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-org.opencv.core.Size-org.opencv.core.Rect-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI1)</pre>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix1</code> - First camera intrinsic matrix.</dd>
<dd><code>distCoeffs1</code> - First camera distortion parameters.</dd>
<dd><code>cameraMatrix2</code> - Second camera intrinsic matrix.</dd>
<dd><code>distCoeffs2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>T</code> - Translation vector from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.</dd>
<dd><code>alpha</code> - Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.</dd>
<dd><code>newImageSize</code> - New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.</dd>
<dd><code>validPixROI1</code> - Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
<ul>
<li>
<b>Horizontal stereo</b>: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx_1 &amp; 0 \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx_2 &amp; T_x*f \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix} ,\)
where \(T_x\) is a horizontal shift between the cameras and \(cx_1=cx_2\) if
REF: CALIB_ZERO_DISPARITY is set.
<ul>
<li>
<b>Vertical stereo</b>: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_1 &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_2 &amp; T_y*f \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix},\)
where \(T_y\) is a vertical shift between the cameras and \(cy_1=cy_2\) if
REF: CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
![image](pics/stereo_undistort.jpg)</dd>
</dl>
</li>
</ul>
<a name="stereoRectify-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-int-double-org.opencv.core.Size-org.opencv.core.Rect-org.opencv.core.Rect-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectify</h4>
<pre>public static&nbsp;void&nbsp;stereoRectify(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs2,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imageSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;T,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;Q,
int&nbsp;flags,
double&nbsp;alpha,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;newImageSize,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI1,
<a href="../../../org/opencv/core/Rect.html" title="class in org.opencv.core">Rect</a>&nbsp;validPixROI2)</pre>
<div class="block">Computes rectification transforms for each head of a calibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>cameraMatrix1</code> - First camera intrinsic matrix.</dd>
<dd><code>distCoeffs1</code> - First camera distortion parameters.</dd>
<dd><code>cameraMatrix2</code> - Second camera intrinsic matrix.</dd>
<dd><code>distCoeffs2</code> - Second camera distortion parameters.</dd>
<dd><code>imageSize</code> - Size of the image used for stereo calibration.</dd>
<dd><code>R</code> - Rotation matrix from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>T</code> - Translation vector from the coordinate system of the first camera to the second camera,
see REF: stereoCalibrate.</dd>
<dd><code>R1</code> - Output 3x3 rectification transform (rotation matrix) for the first camera. This matrix
brings points given in the unrectified first camera's coordinate system to points in the rectified
first camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified first camera's coordinate system to the rectified first camera's coordinate system.</dd>
<dd><code>R2</code> - Output 3x3 rectification transform (rotation matrix) for the second camera. This matrix
brings points given in the unrectified second camera's coordinate system to points in the rectified
second camera's coordinate system. In more technical terms, it performs a change of basis from the
unrectified second camera's coordinate system to the rectified second camera's coordinate system.</dd>
<dd><code>P1</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the first
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified first camera's image.</dd>
<dd><code>P2</code> - Output 3x4 projection matrix in the new (rectified) coordinate systems for the second
camera, i.e. it projects points given in the rectified first camera coordinate system into the
rectified second camera's image.</dd>
<dd><code>Q</code> - Output \(4 \times 4\) disparity-to-depth mapping matrix (see REF: reprojectImageTo3D).</dd>
<dd><code>flags</code> - Operation flags that may be zero or REF: CALIB_ZERO_DISPARITY . If the flag is set,
the function makes the principal points of each camera have the same pixel coordinates in the
rectified views. And if the flag is not set, the function may still shift the images in the
horizontal or vertical direction (depending on the orientation of epipolar lines) to maximize the
useful image area.</dd>
<dd><code>alpha</code> - Free scaling parameter. If it is -1 or absent, the function performs the default
scaling. Otherwise, the parameter should be between 0 and 1. alpha=0 means that the rectified
images are zoomed and shifted so that only valid pixels are visible (no black areas after
rectification). alpha=1 means that the rectified image is decimated and shifted so that all the
pixels from the original images from the cameras are retained in the rectified images (no source
image pixels are lost). Any intermediate value yields an intermediate result between
those two extreme cases.</dd>
<dd><code>newImageSize</code> - New image resolution after rectification. The same size should be passed to
#initUndistortRectifyMap (see the stereo_calib.cpp sample in OpenCV samples directory). When (0,0)
is passed (default), it is set to the original imageSize . Setting it to a larger value can help you
preserve details in the original image, especially when there is a big radial distortion.</dd>
<dd><code>validPixROI1</code> - Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).</dd>
<dd><code>validPixROI2</code> - Optional output rectangles inside the rectified images where all the pixels
are valid. If alpha=0 , the ROIs cover the whole images. Otherwise, they are likely to be smaller
(see the picture below).
The function computes the rotation matrices for each camera that (virtually) make both camera image
planes the same plane. Consequently, this makes all the epipolar lines parallel and thus simplifies
the dense stereo correspondence problem. The function takes the matrices computed by #stereoCalibrate
as input. As output, it provides two rotation matrices and also two projection matrices in the new
coordinates. The function distinguishes the following two cases:
<ul>
<li>
<b>Horizontal stereo</b>: the first and the second camera views are shifted relative to each other
mainly along the x-axis (with possible small vertical shift). In the rectified images, the
corresponding epipolar lines in the left and right cameras are horizontal and have the same
y-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx_1 &amp; 0 \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx_2 &amp; T_x*f \\
0 &amp; f &amp; cy &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix} ,\)
where \(T_x\) is a horizontal shift between the cameras and \(cx_1=cx_2\) if
REF: CALIB_ZERO_DISPARITY is set.
<ul>
<li>
<b>Vertical stereo</b>: the first and the second camera views are shifted relative to each other
mainly in the vertical direction (and probably a bit in the horizontal direction too). The epipolar
lines in the rectified images are vertical and have the same x-coordinate. P1 and P2 look like:
</li>
</ul>
\(\texttt{P1} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_1 &amp; 0 \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix}\)
\(\texttt{P2} = \begin{bmatrix}
f &amp; 0 &amp; cx &amp; 0 \\
0 &amp; f &amp; cy_2 &amp; T_y*f \\
0 &amp; 0 &amp; 1 &amp; 0
\end{bmatrix},\)
where \(T_y\) is a vertical shift between the cameras and \(cy_1=cy_2\) if
REF: CALIB_ZERO_DISPARITY is set.
As you can see, the first three columns of P1 and P2 will effectively be the new "rectified" camera
matrices. The matrices, together with R1 and R2 , can then be passed to #initUndistortRectifyMap to
initialize the rectification map for each camera.
See below the screenshot from the stereo_calib.cpp sample. Some red horizontal lines pass through
the corresponding image regions. This means that the images are well rectified, which is what most
stereo correspondence algorithms rely on. The green rectangles are roi1 and roi2 . You see that
their interiors are all valid pixels.
![image](pics/stereo_undistort.jpg)</dd>
</dl>
</li>
</ul>
<a name="stereoRectifyUncalibrated-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectifyUncalibrated</h4>
<pre>public static&nbsp;boolean&nbsp;stereoRectifyUncalibrated(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H2)</pre>
<div class="block">Computes a rectification transform for an uncalibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of feature points in the first image.</dd>
<dd><code>points2</code> - The corresponding points in the second image. The same formats as in
#findFundamentalMat are supported.</dd>
<dd><code>F</code> - Input fundamental matrix. It can be computed from the same set of point pairs using
#findFundamentalMat .</dd>
<dd><code>imgSize</code> - Size of the image.</dd>
<dd><code>H1</code> - Output rectification homography matrix for the first image.</dd>
<dd><code>H2</code> - Output rectification homography matrix for the second image.
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
for which \(|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|&gt;\texttt{threshold}\) ) are
rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
The function computes the rectification transformations without knowing intrinsic parameters of the
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
related difference from #stereoRectify is that the function outputs not the rectification
transformations in the object (3D) space, but the planar perspective transformations encoded by the
homography matrices H1 and H2 . The function implements the algorithm CITE: Hartley99 .
<b>Note:</b>
While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
it would be better to correct it before computing the fundamental matrix and calling this
function. For example, distortion coefficients can be estimated for each head of stereo camera
separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
just the point coordinates can be corrected with #undistortPoints .</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="stereoRectifyUncalibrated-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Size-org.opencv.core.Mat-org.opencv.core.Mat-double-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>stereoRectifyUncalibrated</h4>
<pre>public static&nbsp;boolean&nbsp;stereoRectifyUncalibrated(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;F,
<a href="../../../org/opencv/core/Size.html" title="class in org.opencv.core">Size</a>&nbsp;imgSize,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;H2,
double&nbsp;threshold)</pre>
<div class="block">Computes a rectification transform for an uncalibrated stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>points1</code> - Array of feature points in the first image.</dd>
<dd><code>points2</code> - The corresponding points in the second image. The same formats as in
#findFundamentalMat are supported.</dd>
<dd><code>F</code> - Input fundamental matrix. It can be computed from the same set of point pairs using
#findFundamentalMat .</dd>
<dd><code>imgSize</code> - Size of the image.</dd>
<dd><code>H1</code> - Output rectification homography matrix for the first image.</dd>
<dd><code>H2</code> - Output rectification homography matrix for the second image.</dd>
<dd><code>threshold</code> - Optional threshold used to filter out the outliers. If the parameter is greater
than zero, all the point pairs that do not comply with the epipolar geometry (that is, the points
for which \(|\texttt{points2[i]}^T*\texttt{F}*\texttt{points1[i]}|&gt;\texttt{threshold}\) ) are
rejected prior to computing the homographies. Otherwise, all the points are considered inliers.
The function computes the rectification transformations without knowing intrinsic parameters of the
cameras and their relative position in the space, which explains the suffix "uncalibrated". Another
related difference from #stereoRectify is that the function outputs not the rectification
transformations in the object (3D) space, but the planar perspective transformations encoded by the
homography matrices H1 and H2 . The function implements the algorithm CITE: Hartley99 .
<b>Note:</b>
While the algorithm does not need to know the intrinsic parameters of the cameras, it heavily
depends on the epipolar geometry. Therefore, if the camera lenses have a significant distortion,
it would be better to correct it before computing the fundamental matrix and calling this
function. For example, distortion coefficients can be estimated for each head of stereo camera
separately by using #calibrateCamera . Then, the images can be corrected using #undistort , or
just the point coordinates can be corrected with #undistortPoints .</dd>
<dt><span class="returnLabel">Returns:</span></dt>
<dd>automatically generated</dd>
</dl>
</li>
</ul>
<a name="triangulatePoints-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>triangulatePoints</h4>
<pre>public static&nbsp;void&nbsp;triangulatePoints(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatr1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projMatr2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projPoints1,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;projPoints2,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;points4D)</pre>
<div class="block">This function reconstructs 3-dimensional points (in homogeneous coordinates) by using
their observations with a stereo camera.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>projMatr1</code> - 3x4 projection matrix of the first camera, i.e. this matrix projects 3D points
given in the world's coordinate system into the first image.</dd>
<dd><code>projMatr2</code> - 3x4 projection matrix of the second camera, i.e. this matrix projects 3D points
given in the world's coordinate system into the second image.</dd>
<dd><code>projPoints1</code> - 2xN array of feature points in the first image. In the case of the c++ version,
it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.</dd>
<dd><code>projPoints2</code> - 2xN array of corresponding points in the second image. In the case of the c++
version, it can be also a vector of feature points or two-channel matrix of size 1xN or Nx1.</dd>
<dd><code>points4D</code> - 4xN array of reconstructed points in homogeneous coordinates. These points are
returned in the world's coordinate system.
<b>Note:</b>
Keep in mind that all input data should be of float type in order for this function to work.
<b>Note:</b>
If the projection matrices from REF: stereoRectify are used, then the returned points are
represented in the first camera's rectified coordinate system.
SEE:
reprojectImageTo3D</dd>
</dl>
</li>
</ul>
<a name="undistort-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>undistort</h4>
<pre>public static&nbsp;void&nbsp;undistort(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs)</pre>
<div class="block">Transforms an image to compensate for lens distortion.
The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
Those pixels in the destination image, for which there is no correspondent pixels in the source
image, are filled with zeros (black color).
A particular subset of the source image that will be visible in the corrected image can be regulated
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
newCameraMatrix depending on your requirements.
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
the resolution of images is different from the resolution used at the calibration stage, \(f_x,
f_y, c_x\) and \(c_y\) need to be scaled accordingly, while the distortion coefficients remain
the same.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Input (distorted) image.</dd>
<dd><code>dst</code> - Output (corrected) image that has the same size and type as src .</dd>
<dd><code>cameraMatrix</code> - Input camera matrix \(A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
cameraMatrix but you may additionally scale and shift the result by using a different matrix.</dd>
</dl>
</li>
</ul>
<a name="undistort-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>undistort</h4>
<pre>public static&nbsp;void&nbsp;undistort(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;newCameraMatrix)</pre>
<div class="block">Transforms an image to compensate for lens distortion.
The function transforms an image to compensate radial and tangential lens distortion.
The function is simply a combination of #initUndistortRectifyMap (with unity R ) and #remap
(with bilinear interpolation). See the former function for details of the transformation being
performed.
Those pixels in the destination image, for which there is no correspondent pixels in the source
image, are filled with zeros (black color).
A particular subset of the source image that will be visible in the corrected image can be regulated
by newCameraMatrix. You can use #getOptimalNewCameraMatrix to compute the appropriate
newCameraMatrix depending on your requirements.
The camera matrix and the distortion parameters can be determined using #calibrateCamera. If
the resolution of images is different from the resolution used at the calibration stage, \(f_x,
f_y, c_x\) and \(c_y\) need to be scaled accordingly, while the distortion coefficients remain
the same.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Input (distorted) image.</dd>
<dd><code>dst</code> - Output (corrected) image that has the same size and type as src .</dd>
<dd><code>cameraMatrix</code> - Input camera matrix \(A = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>newCameraMatrix</code> - Camera matrix of the distorted image. By default, it is the same as
cameraMatrix but you may additionally scale and shift the result by using a different matrix.</dd>
</dl>
</li>
</ul>
<a name="undistortPoints-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>undistortPoints</h4>
<pre>public static&nbsp;void&nbsp;undistortPoints(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;src,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs)</pre>
<div class="block">Computes the ideal point coordinates from the observed point coordinates.
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
sparse set of points instead of a raster image. Also the function performs a reverse transformation
to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
planar object, it does, up to a translation vector, if the proper R is specified.
For each observed point coordinate \((u, v)\) the function computes:
\(
\begin{array}{l}
x^{"} \leftarrow (u - c_x)/f_x \\
y^{"} \leftarrow (v - c_y)/f_y \\
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x \leftarrow X/W \\
y \leftarrow Y/W \\
\text{only performed if P is specified:} \\
u' \leftarrow x {f'}_x + {c'}_x \\
v' \leftarrow y {f'}_y + {c'}_y
\end{array}
\)
where *undistort* is an approximate iterative algorithm that estimates the normalized original
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
coordinates do not depend on the camera matrix).
The function can be used for both a stereo camera head or a monocular camera (when R is empty).</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
vector&lt;Point2f&gt; ).</dd>
<dd><code>dst</code> - Output ideal point coordinates (1xN/Nx1 2-channel or vector&lt;Point2f&gt; ) after undistortion and reverse perspective
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.</dd>
<dd><code>cameraMatrix</code> - Camera matrix \(\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.</dd>
</dl>
</li>
</ul>
<a name="undistortPoints-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>undistortPoints</h4>
<pre>public static&nbsp;void&nbsp;undistortPoints(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;src,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R)</pre>
<div class="block">Computes the ideal point coordinates from the observed point coordinates.
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
sparse set of points instead of a raster image. Also the function performs a reverse transformation
to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
planar object, it does, up to a translation vector, if the proper R is specified.
For each observed point coordinate \((u, v)\) the function computes:
\(
\begin{array}{l}
x^{"} \leftarrow (u - c_x)/f_x \\
y^{"} \leftarrow (v - c_y)/f_y \\
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x \leftarrow X/W \\
y \leftarrow Y/W \\
\text{only performed if P is specified:} \\
u' \leftarrow x {f'}_x + {c'}_x \\
v' \leftarrow y {f'}_y + {c'}_y
\end{array}
\)
where *undistort* is an approximate iterative algorithm that estimates the normalized original
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
coordinates do not depend on the camera matrix).
The function can be used for both a stereo camera head or a monocular camera (when R is empty).</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
vector&lt;Point2f&gt; ).</dd>
<dd><code>dst</code> - Output ideal point coordinates (1xN/Nx1 2-channel or vector&lt;Point2f&gt; ) after undistortion and reverse perspective
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.</dd>
<dd><code>cameraMatrix</code> - Camera matrix \(\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>R</code> - Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.</dd>
</dl>
</li>
</ul>
<a name="undistortPoints-org.opencv.core.MatOfPoint2f-org.opencv.core.MatOfPoint2f-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>undistortPoints</h4>
<pre>public static&nbsp;void&nbsp;undistortPoints(<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;src,
<a href="../../../org/opencv/core/MatOfPoint2f.html" title="class in org.opencv.core">MatOfPoint2f</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P)</pre>
<div class="block">Computes the ideal point coordinates from the observed point coordinates.
The function is similar to #undistort and #initUndistortRectifyMap but it operates on a
sparse set of points instead of a raster image. Also the function performs a reverse transformation
to #projectPoints. In case of a 3D object, it does not reconstruct its 3D coordinates, but for a
planar object, it does, up to a translation vector, if the proper R is specified.
For each observed point coordinate \((u, v)\) the function computes:
\(
\begin{array}{l}
x^{"} \leftarrow (u - c_x)/f_x \\
y^{"} \leftarrow (v - c_y)/f_y \\
(x',y') = undistort(x^{"},y^{"}, \texttt{distCoeffs}) \\
{[X\,Y\,W]} ^T \leftarrow R*[x' \, y' \, 1]^T \\
x \leftarrow X/W \\
y \leftarrow Y/W \\
\text{only performed if P is specified:} \\
u' \leftarrow x {f'}_x + {c'}_x \\
v' \leftarrow y {f'}_y + {c'}_y
\end{array}
\)
where *undistort* is an approximate iterative algorithm that estimates the normalized original
point coordinates out of the normalized distorted point coordinates ("normalized" means that the
coordinates do not depend on the camera matrix).
The function can be used for both a stereo camera head or a monocular camera (when R is empty).</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - Observed point coordinates, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel (CV_32FC2 or CV_64FC2) (or
vector&lt;Point2f&gt; ).</dd>
<dd><code>dst</code> - Output ideal point coordinates (1xN/Nx1 2-channel or vector&lt;Point2f&gt; ) after undistortion and reverse perspective
transformation. If matrix P is identity or omitted, dst will contain normalized point coordinates.</dd>
<dd><code>cameraMatrix</code> - Camera matrix \(\vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{1}\) .</dd>
<dd><code>distCoeffs</code> - Input vector of distortion coefficients
\((k_1, k_2, p_1, p_2[, k_3[, k_4, k_5, k_6[, s_1, s_2, s_3, s_4[, \tau_x, \tau_y]]]])\)
of 4, 5, 8, 12 or 14 elements. If the vector is NULL/empty, the zero distortion coefficients are assumed.</dd>
<dd><code>R</code> - Rectification transformation in the object space (3x3 matrix). R1 or R2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity transformation is used.</dd>
<dd><code>P</code> - New camera matrix (3x3) or new projection matrix (3x4) \(\begin{bmatrix} {f'}_x &amp; 0 &amp; {c'}_x &amp; t_x \\ 0 &amp; {f'}_y &amp; {c'}_y &amp; t_y \\ 0 &amp; 0 &amp; 1 &amp; t_z \end{bmatrix}\). P1 or P2 computed by
#stereoRectify can be passed here. If the matrix is empty, the identity new camera matrix is used.</dd>
</dl>
</li>
</ul>
<a name="undistortPointsIter-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.Mat-org.opencv.core.TermCriteria-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>undistortPointsIter</h4>
<pre>public static&nbsp;void&nbsp;undistortPointsIter(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;src,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;dst,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cameraMatrix,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;distCoeffs,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;R,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;P,
<a href="../../../org/opencv/core/TermCriteria.html" title="class in org.opencv.core">TermCriteria</a>&nbsp;criteria)</pre>
<div class="block"><b>Note:</b> Default version of #undistortPoints does 5 iterations to compute undistorted points.</div>
<dl>
<dt><span class="paramLabel">Parameters:</span></dt>
<dd><code>src</code> - automatically generated</dd>
<dd><code>dst</code> - automatically generated</dd>
<dd><code>cameraMatrix</code> - automatically generated</dd>
<dd><code>distCoeffs</code> - automatically generated</dd>
<dd><code>R</code> - automatically generated</dd>
<dd><code>P</code> - automatically generated</dd>
<dd><code>criteria</code> - automatically generated</dd>
</dl>
</li>
</ul>
<a name="validateDisparity-org.opencv.core.Mat-org.opencv.core.Mat-int-int-">
<!-- -->
</a>
<ul class="blockList">
<li class="blockList">
<h4>validateDisparity</h4>
<pre>public static&nbsp;void&nbsp;validateDisparity(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cost,
int&nbsp;minDisparity,
int&nbsp;numberOfDisparities)</pre>
</li>
</ul>
<a name="validateDisparity-org.opencv.core.Mat-org.opencv.core.Mat-int-int-int-">
<!-- -->
</a>
<ul class="blockListLast">
<li class="blockList">
<h4>validateDisparity</h4>
<pre>public static&nbsp;void&nbsp;validateDisparity(<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;disparity,
<a href="../../../org/opencv/core/Mat.html" title="class in org.opencv.core">Mat</a>&nbsp;cost,
int&nbsp;minDisparity,
int&nbsp;numberOfDisparities,
int&nbsp;disp12MaxDisp)</pre>
</li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
</div>
<!-- ========= END OF CLASS DATA ========= -->
<!-- ======= START OF BOTTOM NAVBAR ====== -->
<div class="bottomNav"><a name="navbar.bottom">
<!-- -->
</a>
<div class="skipNav"><a href="#skip.navbar.bottom" title="Skip navigation links">Skip navigation links</a></div>
<a name="navbar.bottom.firstrow">
<!-- -->
</a>
<ul class="navList" title="Navigation">
<li><a href="../../../overview-summary.html">Overview</a></li>
<li><a href="package-summary.html">Package</a></li>
<li class="navBarCell1Rev">Class</li>
<li><a href="package-tree.html">Tree</a></li>
<li><a href="../../../index-all.html">Index</a></li>
<li><a href="../../../help-doc.html">Help</a></li>
</ul>
<div class="aboutLanguage">
<script>
var url = window.location.href;
var pos = url.lastIndexOf('/javadoc/');
url = pos >= 0 ? (url.substring(0, pos) + '/javadoc/mymath.js') : (window.location.origin + '/mymath.js');
var script = document.createElement('script');
script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML,' + url;
document.getElementsByTagName('head')[0].appendChild(script);
</script>
</div>
</div>
<div class="subNav">
<ul class="navList">
<li>Prev&nbsp;Class</li>
<li><a href="../../../org/opencv/calib3d/StereoBM.html" title="class in org.opencv.calib3d"><span class="typeNameLink">Next&nbsp;Class</span></a></li>
</ul>
<ul class="navList">
<li><a href="../../../index.html?org/opencv/calib3d/Calib3d.html" target="_top">Frames</a></li>
<li><a href="Calib3d.html" target="_top">No&nbsp;Frames</a></li>
</ul>
<ul class="navList" id="allclasses_navbar_bottom">
<li><a href="../../../allclasses-noframe.html">All&nbsp;Classes</a></li>
</ul>
<div>
<script type="text/javascript"><!--
allClassesLink = document.getElementById("allclasses_navbar_bottom");
if(window==top) {
allClassesLink.style.display = "block";
}
else {
allClassesLink.style.display = "none";
}
//-->
</script>
</div>
<div>
<ul class="subNavList">
<li>Summary:&nbsp;</li>
<li>Nested&nbsp;|&nbsp;</li>
<li><a href="#field.summary">Field</a>&nbsp;|&nbsp;</li>
<li><a href="#constructor.summary">Constr</a>&nbsp;|&nbsp;</li>
<li><a href="#method.summary">Method</a></li>
</ul>
<ul class="subNavList">
<li>Detail:&nbsp;</li>
<li><a href="#field.detail">Field</a>&nbsp;|&nbsp;</li>
<li><a href="#constructor.detail">Constr</a>&nbsp;|&nbsp;</li>
<li><a href="#method.detail">Method</a></li>
</ul>
</div>
<a name="skip.navbar.bottom">
<!-- -->
</a></div>
<!-- ======== END OF BOTTOM NAVBAR ======= -->
<p class="legalCopy"><small>Generated on 2021-12-25 08:13:27 / OpenCV 4.5.5</small></p>
</body>
</html>